# American Institute of Mathematical Sciences

September  2017, 16(5): 1641-1671. doi: 10.3934/cpaa.2017079

## Existence and concentration for Kirchhoff type equations around topologically critical points of the potential

 1 Institute of Mathematics, Academy of Mathematics and Systems Science, University of Chinese Academy of Science, Chinese Academy of Science, Beijing 100190, China 2 Department of Mathematics, Honghe University Mengzi, Yunnan 661100, China 3 Department of Mathematics and Information Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China

Received  September 2016 Revised  March 2017 Published  May 2017

We consider the existence and concentration of solutions for the following Kirchhoff Type Equations
 $-\varepsilon^2 M \left( \varepsilon^{2-N} \displaystyle \int_{\mathbb{R}^N} |\nabla v|^2dx \right)Δ v+V(x)v=f(v), \mathrm{in} \ \mathbb{R}^N.$
Under suitable conditions on the continuous functions
 $M$
,
 $V$
and
 $f$
, we obtain a family of positive solutions concentrating around the local maximum or saddle points of
 $V$
. Moreover with appropriate assumptions on
 $V$
, we also have multiple solutions clustering respectively around three kinds of critical points of
 $V$
.
Citation: Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079
##### References:
 [1] A. Azzollini, The elliptic Kirchhoff equation in $R^N$ perturbed by a local nonlinearity, Differ. Integ. Equ., 25 (2012), 543-554. Google Scholar [2] F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773. doi: 10.2307/1990893. Google Scholar [3] P. Avenia, A. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Func. Anal., 262 (2012), 4600-4633. doi: 10.1016/j.jfa.2012.03.009. Google Scholar [4] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151. Google Scholar [5] H. Berestycki and P. L. Lions, Nonlinear scalar field equations Ⅰ, existence of a ground state, Arch. Rational. Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555. Google Scholar [6] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational. Mech. Anal. , 185 (2007), 185-200; Arch. Rational. Mech. Anal. , 190 (2008), 549-551. doi: 10.1007/s00205-008-0178-5. Google Scholar [7] J. Byeon and K. Tanaka, Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899. doi: 10.4171/JEMS/407. Google Scholar [8] J. Byeon and K. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Mem. Amer. Math. Soc., 229 (2014). Google Scholar [9] C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differ. Equ., 250 (2011), 1876-1908. doi: 10.1016/j.jde.2010.11.017. Google Scholar [10] V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $R^n$, Comm. Pure App. Math., 45 (1992), 1217-1269. doi: 10.1002/cpa.3160451002. Google Scholar [11] M. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Par. Differ. Equ., 4 (1996), 121-137. doi: 10.1007/BF01189950. Google Scholar [12] M. Del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire., 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar [13] M. Del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Func. Anal., 149 (1997), 245-265. doi: 10.1006/jfan.1996.3085. Google Scholar [14] M. Del Pino, P. L. Felmer and O. H. Miyagaki, Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential, Nonlinear Anal. Theo. Meth. Appl., 34 (1998), 979-989. doi: 10.1016/S0362-546X(97)00593-2. Google Scholar [15] T. D'Aprile and D. Ruiz, Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems, Math. Zeit., 268 (2011), 605-634. doi: 10.1007/s00209-010-0686-5. Google Scholar [16] G. Figueiredo, N. Ikoma and J. R. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational. Mech. Anal., 213 (2014), 931-979. doi: 10.1007/s00205-014-0747-8. Google Scholar [17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer, Berlin, 2001. Google Scholar [18] M. W. Hirsch, Differential Topology, Springer Science and Business Media, 2012. Google Scholar [19] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differ. Equ., 252 (2012), 1813-1834. doi: 10.1016/j.jde.2011.08.035. Google Scholar [20] L. Jeanjean and K. Tanaka, A remark on least energy solutions in $R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408. doi: 10.1090/S0002-9939-02-06821-1. Google Scholar [21] G. Mechanik Kirchhoff, Teubner, Leipzig, 1883.Google Scholar [22] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346. Google Scholar [23] P. L. Lions, A remark on Bony maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503-508. doi: 10.2307/2045002. Google Scholar [24] P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283. Google Scholar [25] Z. Liu and S. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2014), 747-769. doi: 10.1007/s00033-014-0431-8. Google Scholar [26] Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire., 31 (2014), 155-167. doi: 10.1016/j.anihpc.2013.01.006. Google Scholar [27] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $R^3$, J. Differ. Equ., 257 (2014), 566-600. doi: 10.1016/j.jde.2014.04.011. Google Scholar [28] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. Theo. Meth. Appl., 63 (2005), 1967-1977. Google Scholar [29] T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Let., 16 (2003), 243-248. doi: 10.1016/S0893-9659(03)80038-1. Google Scholar [30] K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255. doi: 10.1016/j.jde.2005.03.006. Google Scholar [31] W. A. Strauss, Existence of solitary waves in higher dimensions, Commu. Math. Phy., 55 (1977), 149-162. Google Scholar [32] C. E. Vasconcellos, On a nonlinear stationary problem in unbound domains, Rev. Mat. Complut., 5 (1992), 309-329. Google Scholar [33] J. Wang, L. Tian and J. Xu, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351. doi: 10.1016/j.jde.2012.05.023. Google Scholar [34] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $R^N$, Nonlinear Anal. Real Wor. Appl., 12 (2011), 1278-1287. doi: 10.1016/j.nonrwa.2010.09.023. Google Scholar [35] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. Google Scholar [36] X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655. doi: 10.1137/S0036141095290240. Google Scholar [37] Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

show all references

##### References:
 [1] A. Azzollini, The elliptic Kirchhoff equation in $R^N$ perturbed by a local nonlinearity, Differ. Integ. Equ., 25 (2012), 543-554. Google Scholar [2] F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773. doi: 10.2307/1990893. Google Scholar [3] P. Avenia, A. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Func. Anal., 262 (2012), 4600-4633. doi: 10.1016/j.jfa.2012.03.009. Google Scholar [4] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151. Google Scholar [5] H. Berestycki and P. L. Lions, Nonlinear scalar field equations Ⅰ, existence of a ground state, Arch. Rational. Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555. Google Scholar [6] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational. Mech. Anal. , 185 (2007), 185-200; Arch. Rational. Mech. Anal. , 190 (2008), 549-551. doi: 10.1007/s00205-008-0178-5. Google Scholar [7] J. Byeon and K. Tanaka, Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899. doi: 10.4171/JEMS/407. Google Scholar [8] J. Byeon and K. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, Mem. Amer. Math. Soc., 229 (2014). Google Scholar [9] C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differ. Equ., 250 (2011), 1876-1908. doi: 10.1016/j.jde.2010.11.017. Google Scholar [10] V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $R^n$, Comm. Pure App. Math., 45 (1992), 1217-1269. doi: 10.1002/cpa.3160451002. Google Scholar [11] M. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Par. Differ. Equ., 4 (1996), 121-137. doi: 10.1007/BF01189950. Google Scholar [12] M. Del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire., 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar [13] M. Del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Func. Anal., 149 (1997), 245-265. doi: 10.1006/jfan.1996.3085. Google Scholar [14] M. Del Pino, P. L. Felmer and O. H. Miyagaki, Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential, Nonlinear Anal. Theo. Meth. Appl., 34 (1998), 979-989. doi: 10.1016/S0362-546X(97)00593-2. Google Scholar [15] T. D'Aprile and D. Ruiz, Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems, Math. Zeit., 268 (2011), 605-634. doi: 10.1007/s00209-010-0686-5. Google Scholar [16] G. Figueiredo, N. Ikoma and J. R. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational. Mech. Anal., 213 (2014), 931-979. doi: 10.1007/s00205-014-0747-8. Google Scholar [17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer, Berlin, 2001. Google Scholar [18] M. W. Hirsch, Differential Topology, Springer Science and Business Media, 2012. Google Scholar [19] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$, J. Differ. Equ., 252 (2012), 1813-1834. doi: 10.1016/j.jde.2011.08.035. Google Scholar [20] L. Jeanjean and K. Tanaka, A remark on least energy solutions in $R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408. doi: 10.1090/S0002-9939-02-06821-1. Google Scholar [21] G. Mechanik Kirchhoff, Teubner, Leipzig, 1883.Google Scholar [22] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346. Google Scholar [23] P. L. Lions, A remark on Bony maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503-508. doi: 10.2307/2045002. Google Scholar [24] P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283. Google Scholar [25] Z. Liu and S. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2014), 747-769. doi: 10.1007/s00033-014-0431-8. Google Scholar [26] Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire., 31 (2014), 155-167. doi: 10.1016/j.anihpc.2013.01.006. Google Scholar [27] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $R^3$, J. Differ. Equ., 257 (2014), 566-600. doi: 10.1016/j.jde.2014.04.011. Google Scholar [28] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. Theo. Meth. Appl., 63 (2005), 1967-1977. Google Scholar [29] T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Let., 16 (2003), 243-248. doi: 10.1016/S0893-9659(03)80038-1. Google Scholar [30] K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255. doi: 10.1016/j.jde.2005.03.006. Google Scholar [31] W. A. Strauss, Existence of solitary waves in higher dimensions, Commu. Math. Phy., 55 (1977), 149-162. Google Scholar [32] C. E. Vasconcellos, On a nonlinear stationary problem in unbound domains, Rev. Mat. Complut., 5 (1992), 309-329. Google Scholar [33] J. Wang, L. Tian and J. Xu, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351. doi: 10.1016/j.jde.2012.05.023. Google Scholar [34] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $R^N$, Nonlinear Anal. Real Wor. Appl., 12 (2011), 1278-1287. doi: 10.1016/j.nonrwa.2010.09.023. Google Scholar [35] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. Google Scholar [36] X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655. doi: 10.1137/S0036141095290240. Google Scholar [37] Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar
 [1] Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111 [2] Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124 [3] Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 [4] Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126 [5] Monica Lazzo, Paul G. Schmidt. Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 566-575. doi: 10.3934/proc.2005.2005.566 [6] Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 [7] Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010 [8] Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 [9] Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 [10] Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 [11] Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027 [12] Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008 [13] Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009 [14] E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209 [15] D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 [16] Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029 [17] Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 [18] Jiu Liu, Jia-Feng Liao, Chun-Lei Tang. Positive solution for the Kirchhoff-type equations involving general subcritical growth. Communications on Pure & Applied Analysis, 2016, 15 (2) : 445-455. doi: 10.3934/cpaa.2016.15.445 [19] Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943 [20] Ling Ding, Shu-Ming Sun. Existence of positive solutions for a class of Kirchhoff type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1663-1685. doi: 10.3934/dcdss.2016069

2018 Impact Factor: 0.925