# American Institute of Mathematical Sciences

May  2017, 16(3): 1083-1102. doi: 10.3934/cpaa.2017052

## Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities

 SISSA -International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy

* Current address: Département de Mathématique, Université de Mons, Place du Parc 20, B-7000 Mons, Belgium.

Received  July 2016 Revised  January 2017 Published  February 2017

Fund Project: Work supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Progetto di Ricerca 2016: Problemi differenziali non lineari: esistenza, molteplicità e proprietà qualitative delle soluzioni"

We study the second order nonlinear differential equation
 $u'' + \sum\limits_{i = 1}^m {} {\alpha _i}{a_i}(x){g_i}(u) - \sum\limits_{j = 1}^{m + 1} {} {\beta _j}{b_j}(x){k_j}(u) = 0,{\rm{ }}$
where $\alpha_{i}, \beta_{j}>0$, $a_{i}(x), b_{j}(x)$ are non-negative Lebesgue integrable functions defined in $\mathopen{[}0, L\mathclose{]}$, and the nonlinearities $g_{i}(s), k_{j}(s)$ are continuous, positive and satisfy suitable growth conditions, as to cover the classical superlinear equation $u"+a(x)u.{p} = 0$, with $p>1$.When the positive parameters $\beta_{j}$ are sufficiently large, we prove the existence of at least $2.{m}-1$positive solutions for the Sturm-Liouville boundary value problems associated with the equation.The proof is based on the Leray-Schauder topological degree for locally compact operators on open and possibly unbounded sets.Finally, we deal with radially symmetric positive solutions for the Dirichlet problems associated with elliptic PDEs.
Citation: Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052
##### References:

show all references

##### References:
The figure shows an example of $3$ positive solutions to the Dirichlet problem associated with (1.1) on $\mathopen{[}0, 3\pi\mathclose{]}$, where $\tau = \pi$, $\sigma = 2\pi$, $L = 3\pi$, $a (x) = \sin^{+}(x)$, $b (x) = \sin^{-}(x)$ (as in the upper part of the figure), $g (s) = s^{2}$, $k (s) = s^{3}$ (for $s>0$).For $\mu = 1$, Theorem 1.1 ensures the existence of $3$ positive solutions, whose graphs are located in the lower part of the figure
The figure shows an example of $3$ positive solutions to the equation $u''+\alpha_{1}a_{1}(x) g_{1}(u)-\beta_{1}b_{1}(x) k_{1}(u)+\alpha_{2}a_{2}(x) g_{2}(u) = 0$ on $\mathopen{[}0, 5\mathclose{]}$ with $u (0) = u'(5) = 0$, whose graphs are located in the lower part of the figure.For this simulation we have chosen $\alpha_{1} = 10$, $\alpha_{2} = 2$, $\beta_{1} = 20$ and the weight functions as in the upper part of the figure, that is $a_{1}(x) = 1$ in $\mathopen{[}0, 2\mathclose{]}$, $-b_{1}(x) = -\sin (\pi x)$ in $\mathopen{[}2, 3\mathclose{]}$, $a_{2}(x) = 0$ in $\mathopen{[}3, 4\mathclose{]}$, $a_{2}(x) = -\sin (\pi x)$ in $\mathopen{[}4, 5\mathclose{]}$.Moreover, we have taken $g_{1}(s) = g_{2}(s) = s\arctan (s)$ and $k_{1}(s) = s/(1+s^{2})$ (for $s>0$).Notice that $k_{1}(s)$ has not a superlinear behavior, since $\lim_{s\to 0^{+}}k_{1}(s)/s = 1>0$ and $\lim_{s\to +\infty}k_{1}(s)/s = 0$.Then [10,Theorem 5.3] does not apply, contrary to Theorem 4.1
 [1] M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 [2] Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405 [3] Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 [4] N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050 [5] Julián López-Góme, Andrea Tellini, F. Zanolin. High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 1-73. doi: 10.3934/cpaa.2014.13.1 [6] Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014 [7] Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050 [8] Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593 [9] Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004 [10] Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061 [11] Leszek Gasiński, Nikolaos S. Papageorgiou. Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1985-1999. doi: 10.3934/cpaa.2013.12.1985 [12] Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95 [13] Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018145 [14] Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066 [15] Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335 [16] Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729 [17] Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028 [18] Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 511-532. doi: 10.3934/dcdss.2018028 [19] Patrick Winkert. Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (2) : 785-802. doi: 10.3934/cpaa.2013.12.785 [20] Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Spiraling bifurcation diagrams in superlinear indefinite problems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1561-1588. doi: 10.3934/dcds.2015.35.1561

2018 Impact Factor: 0.925