• Previous Article
    The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem
  • CPAA Home
  • This Issue
  • Next Article
    S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response
March  2017, 16(2): 629-644. doi: 10.3934/cpaa.2017031

Regularity estimates for continuous solutions of α-convex balance laws

Dipartimento di Matematica 'Tullio Levi-Civita', Università degli Studi di Padova, via Trieste 63,35121 Padova, Italy

Received  August 2016 Revised  October 2016 Published  January 2017

This paper proves new regularity estimates for continuous solutions to the balance equation
${{\partial }_{t}}u+{{\partial }_{x}}f(u)=g\qquad g\ \text{bounded}, f\in {{C}^{\text{2}n}}(\mathbb{R})$
when the flux $f$ satisfies a convexity assumption that we denote as 2n-convexity. The results are known in the case of the quadratic flux by very different arguments in [14,10,8]. We prove that the continuity of $u$ must be in fact $1/2n$-Hölder continuity and that the distributional source term $g$ is determined by the classical derivative of $u$ along any characteristics; part of the proof consists in showing that this classical derivative is well defined at any `Lebesgue point' of $g$ for suitable coverings. These two regularity statements fail in general for $C^{\infty}(\mathbb{R})$, strictly convex fluxes, see [3].
Citation: Laura Caravenna. Regularity estimates for continuous solutions of α-convex balance laws. Communications on Pure & Applied Analysis, 2017, 16 (2) : 629-644. doi: 10.3934/cpaa.2017031
References:
[1]

G. AlbertiS. Bianchini and L. Caravenna, Reduction on characteristics for continuous solution of a scalar balance law, in Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 399-406. Google Scholar

[2]

G. AlbertiS. Bianchini and L. Caravenna, Eulerian, Lagrangian and Broad continuous solutions to a balance law with non convex flux Ⅰ, J. Differential Equations, 261 (2016), 4298-4337. doi: 10.1016/j.jde.2016.06.026. Google Scholar

[3]

G. Alberti, S. Bianchini and L. Caravenna, Eulerian, Lagrangian and Broad continuous solutions to a balance law with non convex flux Ⅱ, Preprint SISSA 32/2016/MATE. doi: 10.1016/j.jde.2016.06.026. Google Scholar

[4]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Clarendon Press, 2000. Google Scholar

[5]

L. AmbrosioF. Serra Cassano and D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal., 16 (2006), 187-232. doi: 10.1007/BF02922114. Google Scholar

[6]

S. Bianchini and L. Caravenna, On optimality of c-cyclically monotone transference plans, C. R. Math. Acad. Sci. Paris, Ser. Ⅰ, 348 (2010), 613-618. doi: 10.1016/j.crma.2010.03.022. Google Scholar

[7]

S. Bianchini and E. Marconi, On the structure of L1-entropy solutions to scalar conservation laws in one space dimension, preprint.Google Scholar

[8]

F. BigolinL. Caravenna and F. Serra Cassano, Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation, Ann. Inst. H. Poincar′e Analyse Non Lin′eaire., 32 (2015), 925-963. doi: 10.1016/j.anihpc.2014.05.001. Google Scholar

[9]

F. Bigolin and F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var., 3 (2010), 69-97. doi: 10.1515/ACV.2010.004. Google Scholar

[10]

G. CittiM. ManfrediniA. Pinamonti and F. Serra Cassano, Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ., 49 (2014), 1279-1308. doi: 10.1007/s00526-013-0622-8. Google Scholar

[11]

C. M. Dafermos, Continuous solutions for balance laws, Ric. Mat., 55 (2006), 79-91. doi: 10.1007/s11587-006-0006-x. Google Scholar

[12]

E. De Giorgi, F. Colombini and L. C. Piccinini, Frontiere orientate di misura minima e questione collegate, Classe di Scienze, Scuola Normale Superiore, Pisa, 1972. Google Scholar

[13]

H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. Google Scholar

[14]

B. FranchiR. Serapioni and F. Serra Cassano, Differentiability of intrinsic Lipschitz functions within Heisenberg groups, Springer-Verlag New York., 21 (2011), 1044-1084. doi: 10.1007/s12220-010-9178-4. Google Scholar

[15]

J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag New York, 2001. doi: 10.1007/978-1-4613-0131-8. Google Scholar

[16]

H. Holden and R. Xavier, Global semigroup of conservative solutions of the nonlinear variational wave equation, Arch. Ration. Mech. Anal., 201 (2011), 871-964. doi: 10.1007/s00205-011-0403-5. Google Scholar

[17]

B. Kirchheim and F. Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2004), 871-896. doi: 10.2422/2036-2145.2004.4.07. Google Scholar

[18]

S. N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR Sb., 81 (1970), 228-255. doi: 10.1070/SM1970v010n02ABEH002156. Google Scholar

[19]

K. Kunugui, Contributions à la théorie des ensembles boreliens et analytiques Ⅱ and Ⅲ, J. Fac. Sci. Hokkaido Imp. Univ. Ser. Ⅰ, 8 (1939), 79-108. Google Scholar

[20]

R. Monti and D. Vittone, Sets with finite Hn-perimeter and controlled normal, Math. Z., 270 (2012), 351-367. doi: 10.1007/s00209-010-0801-7. Google Scholar

[21]

J. Von Neumann, On rings of operators: Reduction Theory, Ann. of Math. (2), 50 (1949), 401–485. doi: 10.2307/1969463. Google Scholar

[22]

S. M. Srivastava, A Course on Borel Sets, Grad. Texts Math. , vol. 180, Springer, 1998. doi: 10.1007/978-3-642-85473-6. Google Scholar

[23]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, 1993. Google Scholar

[24]

D. Vittone, Submanifolds in Carnot Groups, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, Birkhaüser, 2008. Google Scholar

show all references

References:
[1]

G. AlbertiS. Bianchini and L. Caravenna, Reduction on characteristics for continuous solution of a scalar balance law, in Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 399-406. Google Scholar

[2]

G. AlbertiS. Bianchini and L. Caravenna, Eulerian, Lagrangian and Broad continuous solutions to a balance law with non convex flux Ⅰ, J. Differential Equations, 261 (2016), 4298-4337. doi: 10.1016/j.jde.2016.06.026. Google Scholar

[3]

G. Alberti, S. Bianchini and L. Caravenna, Eulerian, Lagrangian and Broad continuous solutions to a balance law with non convex flux Ⅱ, Preprint SISSA 32/2016/MATE. doi: 10.1016/j.jde.2016.06.026. Google Scholar

[4]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Clarendon Press, 2000. Google Scholar

[5]

L. AmbrosioF. Serra Cassano and D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal., 16 (2006), 187-232. doi: 10.1007/BF02922114. Google Scholar

[6]

S. Bianchini and L. Caravenna, On optimality of c-cyclically monotone transference plans, C. R. Math. Acad. Sci. Paris, Ser. Ⅰ, 348 (2010), 613-618. doi: 10.1016/j.crma.2010.03.022. Google Scholar

[7]

S. Bianchini and E. Marconi, On the structure of L1-entropy solutions to scalar conservation laws in one space dimension, preprint.Google Scholar

[8]

F. BigolinL. Caravenna and F. Serra Cassano, Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation, Ann. Inst. H. Poincar′e Analyse Non Lin′eaire., 32 (2015), 925-963. doi: 10.1016/j.anihpc.2014.05.001. Google Scholar

[9]

F. Bigolin and F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var., 3 (2010), 69-97. doi: 10.1515/ACV.2010.004. Google Scholar

[10]

G. CittiM. ManfrediniA. Pinamonti and F. Serra Cassano, Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ., 49 (2014), 1279-1308. doi: 10.1007/s00526-013-0622-8. Google Scholar

[11]

C. M. Dafermos, Continuous solutions for balance laws, Ric. Mat., 55 (2006), 79-91. doi: 10.1007/s11587-006-0006-x. Google Scholar

[12]

E. De Giorgi, F. Colombini and L. C. Piccinini, Frontiere orientate di misura minima e questione collegate, Classe di Scienze, Scuola Normale Superiore, Pisa, 1972. Google Scholar

[13]

H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. Google Scholar

[14]

B. FranchiR. Serapioni and F. Serra Cassano, Differentiability of intrinsic Lipschitz functions within Heisenberg groups, Springer-Verlag New York., 21 (2011), 1044-1084. doi: 10.1007/s12220-010-9178-4. Google Scholar

[15]

J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag New York, 2001. doi: 10.1007/978-1-4613-0131-8. Google Scholar

[16]

H. Holden and R. Xavier, Global semigroup of conservative solutions of the nonlinear variational wave equation, Arch. Ration. Mech. Anal., 201 (2011), 871-964. doi: 10.1007/s00205-011-0403-5. Google Scholar

[17]

B. Kirchheim and F. Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2004), 871-896. doi: 10.2422/2036-2145.2004.4.07. Google Scholar

[18]

S. N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR Sb., 81 (1970), 228-255. doi: 10.1070/SM1970v010n02ABEH002156. Google Scholar

[19]

K. Kunugui, Contributions à la théorie des ensembles boreliens et analytiques Ⅱ and Ⅲ, J. Fac. Sci. Hokkaido Imp. Univ. Ser. Ⅰ, 8 (1939), 79-108. Google Scholar

[20]

R. Monti and D. Vittone, Sets with finite Hn-perimeter and controlled normal, Math. Z., 270 (2012), 351-367. doi: 10.1007/s00209-010-0801-7. Google Scholar

[21]

J. Von Neumann, On rings of operators: Reduction Theory, Ann. of Math. (2), 50 (1949), 401–485. doi: 10.2307/1969463. Google Scholar

[22]

S. M. Srivastava, A Course on Borel Sets, Grad. Texts Math. , vol. 180, Springer, 1998. doi: 10.1007/978-3-642-85473-6. Google Scholar

[23]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, 1993. Google Scholar

[24]

D. Vittone, Submanifolds in Carnot Groups, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, Birkhaüser, 2008. Google Scholar

Figure 1.  Proof of a rough Hölder continuity estimate of u
Figure 2.  Balances on characteristic regions
[1]

Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983

[2]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[3]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[4]

Graziano Crasta, Benedetto Piccoli. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 477-502. doi: 10.3934/dcds.1997.3.477

[5]

Yong Chen, Hongjun Gao, María J. Garrido–Atienza, Björn Schmalfuss. Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than $1/2$ and random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 79-98. doi: 10.3934/dcds.2014.34.79

[6]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[7]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[8]

Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180

[9]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

[10]

Chunrong Chen, Shengji Li. Upper Hölder estimates of solutions to parametric primal and dual vector quasi-equilibria. Journal of Industrial & Management Optimization, 2012, 8 (3) : 691-703. doi: 10.3934/jimo.2012.8.691

[11]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[12]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[13]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[14]

Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271

[15]

Boris Muha. A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function. Networks & Heterogeneous Media, 2014, 9 (1) : 191-196. doi: 10.3934/nhm.2014.9.191

[16]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[17]

Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79

[18]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[19]

Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121

[20]

Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2018138

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (4)
  • Cited by (0)

Other articles
by authors

[Back to Top]