March  2017, 16(2): 513-532. doi: 10.3934/cpaa.2017026

Liouville theorems for elliptic problems in variable exponent spaces

1. 

Institute of Mathematics, Krakow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland

2. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

Received  May 2016 Revised  November 2016 Published  January 2017

We investigate nonexistence of nonnegative solutions to a partial differential inequality involving the p(x){Laplacian of the form
$- {\Delta _{p(x)}}u \geqslant \Phi (x,u(x),\nabla u(x))$
in ${\mathbb{R}^n}$, as well as in outer domain $\Omega \subseteq {\mathbb{R}^n}$, where Φ(x; u; ∇u) is a locally integrable Carathéodory’s function. We assume that Φ(x; u; ∇u) ≥ 0 or compatible with p and u. Growth conditions on u and p lead to Liouville-type results for u.
Citation: SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026
References:
[1]

E. AcerbiI. Fonseca and G. Mingione, Existence and regularity for mixtures of micromagnetic materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2225-2243. doi: 10.1098/rspa.2006.1655. Google Scholar

[2]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. doi: 10.1007/s002050100117. Google Scholar

[3]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259. doi: 10.1007/s00205-002-0208-7. Google Scholar

[4]

T. Adamowicz and P. Górka, The Liouville theorems for elliptic equations with nonstandard growth, Commun. Pure Appl. Anal., 14 (2015), 2377-2392. doi: 10.3934/cpaa.2015.14.2377. Google Scholar

[5]

A. Baalal and A. Qabil, Liouville-type result for quasilinear elliptic problems with variable exponent, Int. J. Pure Appl. Math., 104 (2015), 57-68. Google Scholar

[6]

S. Barnás, Existence results for hemivariational inequality involving p(x)-Laplacian, Opuscula Math., 32 (2012), 439-454. doi: 10.7494/OpMath.2012.32.3.439. Google Scholar

[7]

A. BlanchetM. BonforteJ. DolbeaultG. Grillo and J.L. Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431-436. doi: 10.1016/j.crma.2007.01.011. Google Scholar

[8]

B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math, 106 (1993), 77-92. Google Scholar

[9]

Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522. Google Scholar

[10]

D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. doi: 10.1007/978-3-0348-0548-3. Google Scholar

[11]

L. D'Ambrosio, Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Anal., 70 (2009), 2855-2869. doi: 10.1016/j.na.2008.12.028. Google Scholar

[12]

L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020. doi: 10.1016/j.aim.2009.12.017. Google Scholar

[13]

L. D'Ambrosio and E. Mitidieri, A priori estimates and reduction principles for quasilinear elliptic problems and applications, Adv. Differential Equations, 17 (2012), 935-1000. Google Scholar

[14]

L. D'Ambrosio and E. Mitidieri, Liouville theorems for elliptic systems and applications, J. Math. Anal. Appl., 413 (2014), 121-138. doi: 10.1016/j.jmaa.2013.11.052. Google Scholar

[15]

R. N. Dhara and A. Kałamajska, On equivalent conditions for the validity of Poincaré inequality on weighted Sobolev space with applications to the solvability of degenerated PDEs involving p-Laplacian, J. Math. Anal. Appl., 432 (2015), 463-483. doi: 10.1016/j.jmaa.2015.06.068. Google Scholar

[16]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, Heidelberg, 2011. Lecture Notes in Mathematics, 2017.Google Scholar

[17]

T.-L. Dinu, Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent, Nonlinear Anal., 65 (2006), 1414-1424. doi: 10.1016/j.na.2005.10.022. Google Scholar

[18]

O. Došlý and R. Mařík, Nonexistence of positive solutions of PDE's with p-Laplacian, Acta Math. Hungar, 90 (2001), 89-107. doi: 10.1023/A:1006739909182. Google Scholar

[19]

P. Drábek, A. Ka lamajska and I. Skrzypczak, Caccioppoli-type estimates and Hardy-type inequalities derived from degenerated p-harmonic problems, preprint, 2016.Google Scholar

[20]

X. Fan, On the positive solutions of p(x)-laplace equation, J. Gansu Educ. College, 15 (2001), 401-407. Google Scholar

[21]

X. Fan, Positive solutions to p(x)-Laplacian-Dirichlet problems with sign-changing nonlinearities, Glasg. Math. J., 52 (2010), 505-516. doi: 10.1017/S0017089510000388. Google Scholar

[22]

X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm, p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617. Google Scholar

[23]

X.-L. Fan and Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852. doi: 10.1016/S0362-546X(02)00150-5. Google Scholar

[24]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916. doi: 10.1016/j.na.2008.12.018. Google Scholar

[25]

E. GalakhovO. Salieva and L. Uvarova, Nonexistence results for some nonlinear elliptic and parabolic inequalities with functional parameters, Electron. J. Qual. Theory Differ. Equ., 85 (2015), 1-11. Google Scholar

[26]

N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57. doi: 10.1007/s00208-010-0510-x. Google Scholar

[27]

P. GwiazdaF. Z. Klawe and A. Świerczewska-Gwiazda, Thermo-visco-elasticity for NortonHoff-type models, Nonlinear Anal. Real World Appl., 26 (2015), 199-228. doi: 10.1016/j.nonrwa.2015.05.009. Google Scholar

[28]

P. GwiazdaP. Minakowski and A. Wróblewska-Kamińska, Elliptic problems in generalized Orlicz-Musielak spaces, Cent. Eur. J. Math, 10 (2012), 2019-2032. doi: 10.2478/s11533-012-0126-3. Google Scholar

[29]

P. GwiazdaA. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci, 33 (2010), 125-137. doi: 10.1002/mma.1155. Google Scholar

[30]

P. HarjulehtoP. Hästö and V. Latvala, Harnack's inequality for p(·)-harmonic functions with unbounded exponent p, J. Math. Anal. Appl., 352 (2009), 345-359. doi: 10.1016/j.jmaa.2008.05.090. Google Scholar

[31]

P. HarjulehtoP. HästöÚ.V. Lê and M. Nuortio, Overview of differential equations with nonstandard growth, Nonlinear Anal., 72 (2010), 4551-4574. doi: 10.1016/j.na.2010.02.033. Google Scholar

[32]

P. HarjulehtoJ. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl., (2007), Art ID 48348. Google Scholar

[33]

P. S. Iliaş, Existence and multiplicity of solutions of a p(x)-Laplacian equation in a bounded domain, Rev. Roumaine Math. Pures Appl., 52 (2007), 639-653. Google Scholar

[34]

Y. Jiang and Y. Fu, On the eigenvalue of p(x)-laplace equation, arXiv: 1105.4225v1, 2011.Google Scholar

[35]

A. KałamajskaK. Pietruska-Pałuba and I. Skrzypczak, Nonexistence results for differential inequalities involving A-Laplacian, Adv. Differential Equations, 17 (2012), 307-336. Google Scholar

[36]

G. KaristiE. Mitidieri and S. I. Pokhozhaev, Liouville theorems for quasilinear elliptic inequalities, Dokl. Akad. Nauk, 424 (2009), 741-747. doi: 10.1134/S1064562409010360. Google Scholar

[37]

J. Liu, Positive solutions of the p(x)-Laplace equation with singular nonlinearity, Nonlinear Anal., 72 (2010), 4428-4437. doi: 10.1016/j.na.2010.02.018. Google Scholar

[38]

M. Mihăilescu and D. Stancu-Dumitru, On an eigenvalue problem involving the p(x)-Laplace operator plus a non-local term, Differ. Equ. Appl., 1 (2009), 367-378. doi: 10.7153/dea-01-20. Google Scholar

[39]

E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in ${{\mathbb{R}}^{n}}$, Tr. Mat. Inst. Steklova, 227 (1999), 192-222. Google Scholar

[40]

E. Mitidieri and S. I. Pokhozhaev, Some generalizations of Bernstein's theorem, Differ. Uravn., 38 (2002), 373-378. doi: 10.1023/A:1016066010721. Google Scholar

[41]

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566. doi: 10.1016/j.jde.2014.05.023. Google Scholar

[42]

K. Rajagopal and M. Růžička, On the modeling of electrorheological materials, Mech. Res. Commun., (1996), 401-407. Google Scholar

[43]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. Lecture Notes in Mathematics, 1748. doi: 10.1007/BFb0104029. Google Scholar

[44]

J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities. Problems in mathematical analysis, 61, J. Math. Sci. (N. Y.), 179 (2011), 174-183. doi: 10.1007/s10958-011-0588-z. Google Scholar

[45]

I. Skrzypczak, Hardy-type inequalities derived from p-harmonic problems, Nonlinear Anal., 93 (2013), 30-50. doi: 10.1016/j.na.2013.07.006. Google Scholar

[46]

I. Skrzypczak, Hardy-Poincaré type inequalities derived from p-harmonic problems, In Calculus of variations and PDEs, Banach Center Publ. 101, pages 225-238. Polish Acad. Sci. Inst. Math. , Warsaw, 2014. doi: 10.4064/bc101-0-17. Google Scholar

[47]

L. F. Wang, Liouville theorem for the variable exponent Laplacian, J. East China Norm. Univ. Natur. Sci. Ed., 1 (2009), 84-93. Google Scholar

[48]

V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn., 33 (1997), 107-114. Google Scholar

[49]

V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. Google Scholar

show all references

References:
[1]

E. AcerbiI. Fonseca and G. Mingione, Existence and regularity for mixtures of micromagnetic materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2225-2243. doi: 10.1098/rspa.2006.1655. Google Scholar

[2]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. doi: 10.1007/s002050100117. Google Scholar

[3]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259. doi: 10.1007/s00205-002-0208-7. Google Scholar

[4]

T. Adamowicz and P. Górka, The Liouville theorems for elliptic equations with nonstandard growth, Commun. Pure Appl. Anal., 14 (2015), 2377-2392. doi: 10.3934/cpaa.2015.14.2377. Google Scholar

[5]

A. Baalal and A. Qabil, Liouville-type result for quasilinear elliptic problems with variable exponent, Int. J. Pure Appl. Math., 104 (2015), 57-68. Google Scholar

[6]

S. Barnás, Existence results for hemivariational inequality involving p(x)-Laplacian, Opuscula Math., 32 (2012), 439-454. doi: 10.7494/OpMath.2012.32.3.439. Google Scholar

[7]

A. BlanchetM. BonforteJ. DolbeaultG. Grillo and J.L. Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431-436. doi: 10.1016/j.crma.2007.01.011. Google Scholar

[8]

B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math, 106 (1993), 77-92. Google Scholar

[9]

Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522. Google Scholar

[10]

D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. doi: 10.1007/978-3-0348-0548-3. Google Scholar

[11]

L. D'Ambrosio, Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Anal., 70 (2009), 2855-2869. doi: 10.1016/j.na.2008.12.028. Google Scholar

[12]

L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020. doi: 10.1016/j.aim.2009.12.017. Google Scholar

[13]

L. D'Ambrosio and E. Mitidieri, A priori estimates and reduction principles for quasilinear elliptic problems and applications, Adv. Differential Equations, 17 (2012), 935-1000. Google Scholar

[14]

L. D'Ambrosio and E. Mitidieri, Liouville theorems for elliptic systems and applications, J. Math. Anal. Appl., 413 (2014), 121-138. doi: 10.1016/j.jmaa.2013.11.052. Google Scholar

[15]

R. N. Dhara and A. Kałamajska, On equivalent conditions for the validity of Poincaré inequality on weighted Sobolev space with applications to the solvability of degenerated PDEs involving p-Laplacian, J. Math. Anal. Appl., 432 (2015), 463-483. doi: 10.1016/j.jmaa.2015.06.068. Google Scholar

[16]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, Heidelberg, 2011. Lecture Notes in Mathematics, 2017.Google Scholar

[17]

T.-L. Dinu, Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent, Nonlinear Anal., 65 (2006), 1414-1424. doi: 10.1016/j.na.2005.10.022. Google Scholar

[18]

O. Došlý and R. Mařík, Nonexistence of positive solutions of PDE's with p-Laplacian, Acta Math. Hungar, 90 (2001), 89-107. doi: 10.1023/A:1006739909182. Google Scholar

[19]

P. Drábek, A. Ka lamajska and I. Skrzypczak, Caccioppoli-type estimates and Hardy-type inequalities derived from degenerated p-harmonic problems, preprint, 2016.Google Scholar

[20]

X. Fan, On the positive solutions of p(x)-laplace equation, J. Gansu Educ. College, 15 (2001), 401-407. Google Scholar

[21]

X. Fan, Positive solutions to p(x)-Laplacian-Dirichlet problems with sign-changing nonlinearities, Glasg. Math. J., 52 (2010), 505-516. doi: 10.1017/S0017089510000388. Google Scholar

[22]

X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm, p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617. Google Scholar

[23]

X.-L. Fan and Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852. doi: 10.1016/S0362-546X(02)00150-5. Google Scholar

[24]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916. doi: 10.1016/j.na.2008.12.018. Google Scholar

[25]

E. GalakhovO. Salieva and L. Uvarova, Nonexistence results for some nonlinear elliptic and parabolic inequalities with functional parameters, Electron. J. Qual. Theory Differ. Equ., 85 (2015), 1-11. Google Scholar

[26]

N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57. doi: 10.1007/s00208-010-0510-x. Google Scholar

[27]

P. GwiazdaF. Z. Klawe and A. Świerczewska-Gwiazda, Thermo-visco-elasticity for NortonHoff-type models, Nonlinear Anal. Real World Appl., 26 (2015), 199-228. doi: 10.1016/j.nonrwa.2015.05.009. Google Scholar

[28]

P. GwiazdaP. Minakowski and A. Wróblewska-Kamińska, Elliptic problems in generalized Orlicz-Musielak spaces, Cent. Eur. J. Math, 10 (2012), 2019-2032. doi: 10.2478/s11533-012-0126-3. Google Scholar

[29]

P. GwiazdaA. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci, 33 (2010), 125-137. doi: 10.1002/mma.1155. Google Scholar

[30]

P. HarjulehtoP. Hästö and V. Latvala, Harnack's inequality for p(·)-harmonic functions with unbounded exponent p, J. Math. Anal. Appl., 352 (2009), 345-359. doi: 10.1016/j.jmaa.2008.05.090. Google Scholar

[31]

P. HarjulehtoP. HästöÚ.V. Lê and M. Nuortio, Overview of differential equations with nonstandard growth, Nonlinear Anal., 72 (2010), 4551-4574. doi: 10.1016/j.na.2010.02.033. Google Scholar

[32]

P. HarjulehtoJ. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl., (2007), Art ID 48348. Google Scholar

[33]

P. S. Iliaş, Existence and multiplicity of solutions of a p(x)-Laplacian equation in a bounded domain, Rev. Roumaine Math. Pures Appl., 52 (2007), 639-653. Google Scholar

[34]

Y. Jiang and Y. Fu, On the eigenvalue of p(x)-laplace equation, arXiv: 1105.4225v1, 2011.Google Scholar

[35]

A. KałamajskaK. Pietruska-Pałuba and I. Skrzypczak, Nonexistence results for differential inequalities involving A-Laplacian, Adv. Differential Equations, 17 (2012), 307-336. Google Scholar

[36]

G. KaristiE. Mitidieri and S. I. Pokhozhaev, Liouville theorems for quasilinear elliptic inequalities, Dokl. Akad. Nauk, 424 (2009), 741-747. doi: 10.1134/S1064562409010360. Google Scholar

[37]

J. Liu, Positive solutions of the p(x)-Laplace equation with singular nonlinearity, Nonlinear Anal., 72 (2010), 4428-4437. doi: 10.1016/j.na.2010.02.018. Google Scholar

[38]

M. Mihăilescu and D. Stancu-Dumitru, On an eigenvalue problem involving the p(x)-Laplace operator plus a non-local term, Differ. Equ. Appl., 1 (2009), 367-378. doi: 10.7153/dea-01-20. Google Scholar

[39]

E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in ${{\mathbb{R}}^{n}}$, Tr. Mat. Inst. Steklova, 227 (1999), 192-222. Google Scholar

[40]

E. Mitidieri and S. I. Pokhozhaev, Some generalizations of Bernstein's theorem, Differ. Uravn., 38 (2002), 373-378. doi: 10.1023/A:1016066010721. Google Scholar

[41]

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566. doi: 10.1016/j.jde.2014.05.023. Google Scholar

[42]

K. Rajagopal and M. Růžička, On the modeling of electrorheological materials, Mech. Res. Commun., (1996), 401-407. Google Scholar

[43]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. Lecture Notes in Mathematics, 1748. doi: 10.1007/BFb0104029. Google Scholar

[44]

J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities. Problems in mathematical analysis, 61, J. Math. Sci. (N. Y.), 179 (2011), 174-183. doi: 10.1007/s10958-011-0588-z. Google Scholar

[45]

I. Skrzypczak, Hardy-type inequalities derived from p-harmonic problems, Nonlinear Anal., 93 (2013), 30-50. doi: 10.1016/j.na.2013.07.006. Google Scholar

[46]

I. Skrzypczak, Hardy-Poincaré type inequalities derived from p-harmonic problems, In Calculus of variations and PDEs, Banach Center Publ. 101, pages 225-238. Polish Acad. Sci. Inst. Math. , Warsaw, 2014. doi: 10.4064/bc101-0-17. Google Scholar

[47]

L. F. Wang, Liouville theorem for the variable exponent Laplacian, J. East China Norm. Univ. Natur. Sci. Ed., 1 (2009), 84-93. Google Scholar

[48]

V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn., 33 (1997), 107-114. Google Scholar

[49]

V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. Google Scholar

[1]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[2]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[3]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[4]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[5]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[6]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[7]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[8]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[9]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[10]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[11]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[12]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[13]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[14]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[15]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014

[16]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[17]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[18]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[19]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[20]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (5)
  • Cited by (1)

Other articles
by authors

[Back to Top]