September  2016, 15(5): 1719-1742. doi: 10.3934/cpaa.2016010

A new proof of gradient estimates for mean curvature equations with oblique boundary conditions

1. 

University of Science and Technology of China, Hefei Anhui, 230026, China

Received  September 2015 Revised  March 2016 Published  July 2016

In this paper, we will use the maximum principle to give a new proof of the gradient estimates for mean curvature equations with some oblique derivative problems. In particular, we shall give a new proof for the capillary problem with zero gravity.
Citation: Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010
References:
[1]

L. A. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III: Functions of the eigenvalues of the Hessian,, \emph{Acta Math.}, 155 (1985), 261. doi: 10.1007/BF02392544. Google Scholar

[2]

C. Gerhardt, Global regularity of the solutions to the capillary problem,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 3 (1976), 157. Google Scholar

[3]

P. F. Guan and X. N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equations,, \emph{Invent. Math.}, 151 (2003), 553. doi: 10.1007/s00222-002-0259-2. Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2$^{nd}$ edition, (2001). Google Scholar

[5]

N. J. Korevaar, Maximum principle gradient estimates for the capillary problem,, \emph{Comm. in Partial Differential Equations}, 13 (1988), 1. doi: 10.1080/03605308808820536. Google Scholar

[6]

G. M. Lieberman, The conormal derivative problem for elliptic equations of variational type,, \emph{J.Differential Equations}, 49 (1983), 218. doi: 10.1016/0022-0396(83)90013-X. Google Scholar

[7]

G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations,, \emph{Nonlinear Analysis. Theory. Method $ & $ Applications}, 8 (1984), 49. doi: 10.1016/0362-546X(84)90027-0. Google Scholar

[8]

G. M. Lieberman, Gradient bounds for solutions of nonuniformly elliptic oblique derivative problems,, \emph{Nonlinear Anal.}, 11 (1987), 49. doi: 10.1016/0362-546X(87)90025-3. Google Scholar

[9]

G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle,, \emph{Commun. in Partial Differential Equations}, 13 (1988), 33. doi: 10.1080/03605308808820537. Google Scholar

[10]

G. M. Lieberman, Oblique Boundary Value Problems for Elliptic Equations,, World Scientific Publishing Co. Pte. Ltd., (2013). doi: 10.1142/8679. Google Scholar

[11]

X. N. Ma and J. J. Xu, Gradient estimates of mean curvature equations with Neumann boundary condition,, \emph{Advances in Mathematics}, 290 (2016), 1010. doi: 10.1016/j.aim.2015.10.031. Google Scholar

[12]

L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle,, \emph{Arch. Rational Mech. Anal.}, 61 (1976), 19. Google Scholar

[13]

J. Spruck, On the existence of a capillary surface with prescribed contact angle,, \emph{Comm. Pure Appl. Math.}, 28 (1975), 189. Google Scholar

[14]

N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations,, \emph{Arch. Rational Mech. Anal.}, 111 (1990), 153. doi: 10.1007/BF00375406. Google Scholar

[15]

N. N. Ural'tseva, The solvability of the capillary problem,, \emph{(Russian) Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom.Vyp.}, 4 (1973), 54. Google Scholar

[16]

X. J. Wang, Interior gradient estimates for mean curvature equations,, \emph{Math.Z.}, 228 (1998), 73. doi: 10.1007/PL00004604. Google Scholar

show all references

References:
[1]

L. A. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III: Functions of the eigenvalues of the Hessian,, \emph{Acta Math.}, 155 (1985), 261. doi: 10.1007/BF02392544. Google Scholar

[2]

C. Gerhardt, Global regularity of the solutions to the capillary problem,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 3 (1976), 157. Google Scholar

[3]

P. F. Guan and X. N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equations,, \emph{Invent. Math.}, 151 (2003), 553. doi: 10.1007/s00222-002-0259-2. Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2$^{nd}$ edition, (2001). Google Scholar

[5]

N. J. Korevaar, Maximum principle gradient estimates for the capillary problem,, \emph{Comm. in Partial Differential Equations}, 13 (1988), 1. doi: 10.1080/03605308808820536. Google Scholar

[6]

G. M. Lieberman, The conormal derivative problem for elliptic equations of variational type,, \emph{J.Differential Equations}, 49 (1983), 218. doi: 10.1016/0022-0396(83)90013-X. Google Scholar

[7]

G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations,, \emph{Nonlinear Analysis. Theory. Method $ & $ Applications}, 8 (1984), 49. doi: 10.1016/0362-546X(84)90027-0. Google Scholar

[8]

G. M. Lieberman, Gradient bounds for solutions of nonuniformly elliptic oblique derivative problems,, \emph{Nonlinear Anal.}, 11 (1987), 49. doi: 10.1016/0362-546X(87)90025-3. Google Scholar

[9]

G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle,, \emph{Commun. in Partial Differential Equations}, 13 (1988), 33. doi: 10.1080/03605308808820537. Google Scholar

[10]

G. M. Lieberman, Oblique Boundary Value Problems for Elliptic Equations,, World Scientific Publishing Co. Pte. Ltd., (2013). doi: 10.1142/8679. Google Scholar

[11]

X. N. Ma and J. J. Xu, Gradient estimates of mean curvature equations with Neumann boundary condition,, \emph{Advances in Mathematics}, 290 (2016), 1010. doi: 10.1016/j.aim.2015.10.031. Google Scholar

[12]

L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle,, \emph{Arch. Rational Mech. Anal.}, 61 (1976), 19. Google Scholar

[13]

J. Spruck, On the existence of a capillary surface with prescribed contact angle,, \emph{Comm. Pure Appl. Math.}, 28 (1975), 189. Google Scholar

[14]

N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations,, \emph{Arch. Rational Mech. Anal.}, 111 (1990), 153. doi: 10.1007/BF00375406. Google Scholar

[15]

N. N. Ural'tseva, The solvability of the capillary problem,, \emph{(Russian) Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom.Vyp.}, 4 (1973), 54. Google Scholar

[16]

X. J. Wang, Interior gradient estimates for mean curvature equations,, \emph{Math.Z.}, 228 (1998), 73. doi: 10.1007/PL00004604. Google Scholar

[1]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[2]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[3]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[4]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[5]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[6]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[7]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[8]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[9]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[10]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[11]

Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297

[12]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[13]

Eun Heui Kim. Boundary gradient estimates for subsonic solutions of compressible transonic potential flows. Conference Publications, 2007, 2007 (Special) : 573-579. doi: 10.3934/proc.2007.2007.573

[14]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[15]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[16]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure & Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[17]

Jun Wang, Wei Wei, Jinju Xu. Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3243-3265. doi: 10.3934/cpaa.2019146

[18]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[19]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[20]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]