January  2016, 15(1): 9-39. doi: 10.3934/cpaa.2016.15.9

Average error for spectral asymptotics on surfaces

1. 

Mathematics Department, Malott Hall, Cornell Univeristy, Ithaca, NY 14853, United States

Received  June 2015 Revised  October 2015 Published  December 2015

Let $N(t)$ denote the eigenvalue counting function of the Laplacian on a compact surface of constant nonnegative curvature, with or without boundary. We define a refined asymptotic formula $\widetilde N(t)=At+Bt^{1/2}+C$, where the constants are expressed in terms of the geometry of the surface and its boundary, and consider the average error $A(t)=\frac 1 t \int^t_0 D(s)\,ds$ for $D(t)=N(t)-\widetilde N(t)$. We present a conjecture for the asymptotic behavior of $A(t)$, and study some examples that support the conjecture.
Citation: Robert S. Strichartz. Average error for spectral asymptotics on surfaces. Communications on Pure & Applied Analysis, 2016, 15 (1) : 9-39. doi: 10.3934/cpaa.2016.15.9
References:
[1]

M. van den Berg and S. Srisatkunarajah, Heat flow and Brownian motion for a region in $\mathbb R^2$ with a polygonal boundary,, \emph{Probab. Theory Related Fields}, 86 (1990), 41. doi: 10.1007/BF01207512. Google Scholar

[2]

P. Bleher, Distribution of energy levels of a quantum free particle on a surface of revolution,, \emph{Duke Math. J.}, 74 (1994), 45. doi: 10.1215/S0012-7094-94-07403-6. Google Scholar

[3]

P. Buser, Geometry and Spectra of Compact Riemann Surfaces,, Birkhauser Boston, (1992). Google Scholar

[4]

P. B. Gilkey, Asymptotic Formulae in Spectral Geometry,, Chapman & Hall /CRC, (2004). Google Scholar

[5]

J. Fox, E. Greif, D. Kaplan and R. Strichartz, Spectrum of the Laplacian on Regular Polyhedral Surfaces,, in preparation., (). Google Scholar

[6]

V. Ivrii, Precise Spectral Asymptotics for Elliptic Operators,, Lecture Notes in Math \textbf{1100} (1984), 1100 (1984). Google Scholar

[7]

S. Jayakar and R. Strichartz, Average number of lattice points in a disk,, \emph{Comm. Pure Appl. Analysis}, 15 (2016), 1. Google Scholar

[8]

M. Kac, Can one hear the shape of a drum,, \emph{Amer. Math. Monthly}, 783 (1966), 1. Google Scholar

[9]

D. V. Kosygin, A. A. Minasov and Ya. G. Sinai, Statistical properties of the spectra of Laplace Beltrami operators on Liouville surfaces,, \emph{Russian Math. Surveys}, 48 (1993). doi: 10.1070/RM1993v048n04ABEH001052. Google Scholar

[10]

H. Lapointe, I. Potterovich and Yu. Safarov, Average growth of the spectral function on a Riemannian manifold,, \emph{Comm. P. D. E.}, 34 (2009), 581. doi: 10.1080/03605300802537453. Google Scholar

[11]

T. Murray and R. Strichartz, Numerical investigations of spectral asymptotics on surfaces,, in preparation., (). Google Scholar

[12]

P. Sarnak, Spectra of hyperbolic surfaces,, \emph{Bull. Amer. Math. Soc.}, 40 (2003), 441. doi: 10.1090/S0273-0979-03-00991-1. Google Scholar

[13]

C. Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian,, Princeton Univ. Press, (2014). doi: 10.1515/9781400850549. Google Scholar

[14]

R. Strichartz, Spectral asymptotics revisited,, \emph{J. Fourier Anal. Appl.}, 18 (2012), 626. doi: 10.1007/s00041-012-9216-7. Google Scholar

[15]

Yu. G. Safarov, Riesz means of the distribution function of the eigenvalues of an elliptic operator,, \emph{J. Sov. Math.}, 49 (1990), 1210. doi: 10.1007/BF02208718. Google Scholar

[16]

R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés,, \emph{Bull. Math. Soc. Fr.}, 91 (1963), 289. Google Scholar

show all references

References:
[1]

M. van den Berg and S. Srisatkunarajah, Heat flow and Brownian motion for a region in $\mathbb R^2$ with a polygonal boundary,, \emph{Probab. Theory Related Fields}, 86 (1990), 41. doi: 10.1007/BF01207512. Google Scholar

[2]

P. Bleher, Distribution of energy levels of a quantum free particle on a surface of revolution,, \emph{Duke Math. J.}, 74 (1994), 45. doi: 10.1215/S0012-7094-94-07403-6. Google Scholar

[3]

P. Buser, Geometry and Spectra of Compact Riemann Surfaces,, Birkhauser Boston, (1992). Google Scholar

[4]

P. B. Gilkey, Asymptotic Formulae in Spectral Geometry,, Chapman & Hall /CRC, (2004). Google Scholar

[5]

J. Fox, E. Greif, D. Kaplan and R. Strichartz, Spectrum of the Laplacian on Regular Polyhedral Surfaces,, in preparation., (). Google Scholar

[6]

V. Ivrii, Precise Spectral Asymptotics for Elliptic Operators,, Lecture Notes in Math \textbf{1100} (1984), 1100 (1984). Google Scholar

[7]

S. Jayakar and R. Strichartz, Average number of lattice points in a disk,, \emph{Comm. Pure Appl. Analysis}, 15 (2016), 1. Google Scholar

[8]

M. Kac, Can one hear the shape of a drum,, \emph{Amer. Math. Monthly}, 783 (1966), 1. Google Scholar

[9]

D. V. Kosygin, A. A. Minasov and Ya. G. Sinai, Statistical properties of the spectra of Laplace Beltrami operators on Liouville surfaces,, \emph{Russian Math. Surveys}, 48 (1993). doi: 10.1070/RM1993v048n04ABEH001052. Google Scholar

[10]

H. Lapointe, I. Potterovich and Yu. Safarov, Average growth of the spectral function on a Riemannian manifold,, \emph{Comm. P. D. E.}, 34 (2009), 581. doi: 10.1080/03605300802537453. Google Scholar

[11]

T. Murray and R. Strichartz, Numerical investigations of spectral asymptotics on surfaces,, in preparation., (). Google Scholar

[12]

P. Sarnak, Spectra of hyperbolic surfaces,, \emph{Bull. Amer. Math. Soc.}, 40 (2003), 441. doi: 10.1090/S0273-0979-03-00991-1. Google Scholar

[13]

C. Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian,, Princeton Univ. Press, (2014). doi: 10.1515/9781400850549. Google Scholar

[14]

R. Strichartz, Spectral asymptotics revisited,, \emph{J. Fourier Anal. Appl.}, 18 (2012), 626. doi: 10.1007/s00041-012-9216-7. Google Scholar

[15]

Yu. G. Safarov, Riesz means of the distribution function of the eigenvalues of an elliptic operator,, \emph{J. Sov. Math.}, 49 (1990), 1210. doi: 10.1007/BF02208718. Google Scholar

[16]

R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés,, \emph{Bull. Math. Soc. Fr.}, 91 (1963), 289. Google Scholar

[1]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[2]

Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232

[3]

Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239

[4]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[5]

Álvaro Castañeda, Gonzalo Robledo. Almost reducibility of linear difference systems from a spectral point of view. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1977-1988. doi: 10.3934/cpaa.2017097

[6]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[7]

Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739

[8]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[9]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[10]

Xin-He Miao, Jein-Shan Chen. Error bounds for symmetric cone complementarity problems. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 627-641. doi: 10.3934/naco.2013.3.627

[11]

R. Enkhbat , N. Tungalag, A. S. Strekalovsky. Pseudoconvexity properties of average cost functions. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 233-236. doi: 10.3934/naco.2015.5.233

[12]

R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242

[13]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[14]

Ali Maalaoui. Prescribing the Q-curvature on the sphere with conical singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6307-6330. doi: 10.3934/dcds.2016074

[15]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

[16]

Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429-444. doi: 10.3934/amc.2017036

[17]

Francesco Maggi, Salvatore Stuvard, Antonello Scardicchio. Soap films with gravity and almost-minimal surfaces. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-36. doi: 10.3934/dcds.2019236

[18]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[19]

Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651

[20]

Piotr Pokora, Tomasz Szemberg. Minkowski bases on algebraic surfaces with rational polyhedral pseudo-effective cone. Electronic Research Announcements, 2014, 21: 126-131. doi: 10.3934/era.2014.21.126

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]