March  2016, 15(2): 549-562. doi: 10.3934/cpaa.2016.15.549

Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities

1. 

Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271. La Laguna

2. 

Departamento de Análisis Matemático, Universidad de Alicante, Ap 99, 03080, Alicante

3. 

Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 -- La Laguna, Spain

Received  July 2015 Revised  December 2015 Published  January 2016

In this paper we consider the elliptic system $\Delta u = u^p -v^q$, $\Delta v= -u^r +v^s$ in $\Omega$, where the exponents verify $p,s>1$, $q,r>0$ and $ps>qr$, and $\Omega$ is a smooth bounded domain of $R^N$. First, we show existence and uniqueness of boundary blow-up solutions, that is, solutions $(u,v)$ verifying $u=v=+\infty$ on $\partial \Omega$. Then, we use them to analyze the removability of singularities of positive solutions of the system in the particular case $qr\leq 1$, where comparison is available.
Citation: Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549
References:
[1]

C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour,, \emph{J. Anal. Math.}, 58 (1992), 9. doi: 10.1007/BF02790355. Google Scholar

[2]

M. F. Bidaut-Véron, M. García-Huidobro and C. Yarur, Keller-Osserman estimates for some quasilinear elliptic systems,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 1547. Google Scholar

[3]

M. F. Bidaut-Véron and P. Grillot, Estimations a priori pour les singularitées isolées d'un système elliptique hamiltonien,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 325 (1997), 617. doi: 10.1016/S0764-4442(97)84771-4. Google Scholar

[4]

M. F. Bidaut-Véron and P. Grillot, Asymptotic behaviour of elliptic systems with mixed absorption and source terms,, \emph{Asymp. Anal.}, 19 (1999), 117. Google Scholar

[5]

M. F. Bidaut-Véron and P. Grillot, Singularities in elliptic systems with absorption terms,, \emph{Annali Scuola Norm. Sup. Pisa}, 28 (1999), 229. Google Scholar

[6]

H. Brezis and L. Véron, Removable singularities for some nonlinear elliptic equations,, \emph{Arch. Rat. Mech. Anal.}, 75 (1980), 1. doi: 10.1007/BF00284616. Google Scholar

[7]

F. C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials,, \emph{Mem. Amer. Math. Soc.}, 227 (2014). Google Scholar

[8]

N. Dancer and Y. Du, Effects of certain degeneracies in the predator-prey model,, \emph{SIAM J. Math. Anal.}, 34 (2002), 292. doi: 10.1137/S0036141001387598. Google Scholar

[9]

J. Dávila, L. Dupaigne, O. Goubet and S. Martínez, Boundary blow-up solutions of cooperative systems,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 26 (2009), 1767. doi: 10.1016/j.anihpc.2008.12.003. Google Scholar

[10]

J. I. Díaz, M. Lazzo and P. G. Schmidt, Large solutions for a system of elliptic equations arising from fluid dynamics,, \emph{SIAM J. Math. Anal.}, 37 (2005), 490. doi: 10.1137/S0036141004443555. Google Scholar

[11]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness,, \emph{Nonl. Anal.}, 20 (1993), 97. doi: 10.1016/0362-546X(93)90012-H. Google Scholar

[12]

Y. Du, Effects of a degeneracy in the competition model. Part I: classical and generalized steady-state solutions,, \emph{J. Diff. Eqns.}, 181 (2002), 92. doi: 10.1006/jdeq.2001.4074. Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model. Part II: perturbation and dynamical behaviour,, \emph{J. Diff. Eqns.}, 181 (2002), 133. doi: 10.1006/jdeq.2001.4075. Google Scholar

[14]

M. García-Huidobro and C. Yarur, Classification of positive singular solutions for a class of semilinear elliptic systems,, \emph{Adv. Diff. Eqns.}, 2 (1997), 383. Google Scholar

[15]

J. García-Melián, A remark on uniqueness of large solutions for elliptic systems of competitive type,, \emph{J. Math. Anal. Appl.}, 331 (2007), 608. doi: 10.1016/j.jmaa.2006.09.006. Google Scholar

[16]

J. García-Melián, Large solutions for an elliptic system of quasilinear equations,, \emph{J. Diff. Eqns.}, 245 (2008), 3735. doi: 10.1016/j.jde.2008.04.004. Google Scholar

[17]

J. García-Melián, R. Letelier Albornoz and J. Sabina de Lis, The solvability of an elliptic system under a singular boundary condition,, \emph{Proc. Roy. Soc. Edinburgh}, 136 (2006), 509. doi: 10.1017/S0308210500005047. Google Scholar

[18]

J. García-Melián and J. D. Rossi, Boundary blow-up solutions to elliptic systems of competitive type,, \emph{J. Diff. Eqns.}, 206 (2004), 156. doi: 10.1016/j.jde.2003.12.004. Google Scholar

[19]

J. García-Melián and A. Suárez, Existence and uniqueness of positive large solutions to some cooperative elliptic systems,, \emph{Adv. Nonl. Stud.}, 3 (2003), 193. Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[21]

J. López-Gómez, Coexistence and metacoexistence for competitive species,, \emph{Houston J. Math.}, 29 (2003), 483. Google Scholar

[22]

V. Rădulescu, Singular phenomena in nonlinear elliptic problems,, in \emph{Handbook of differential equations; stationary partial differential equations}, (2007). Google Scholar

[23]

L. Véron, Semilinear elliptic equations with uniform blow up on the boundary,, \emph{J. Anal. Math.}, 59 (1992), 231. doi: 10.1007/BF02790229. Google Scholar

show all references

References:
[1]

C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour,, \emph{J. Anal. Math.}, 58 (1992), 9. doi: 10.1007/BF02790355. Google Scholar

[2]

M. F. Bidaut-Véron, M. García-Huidobro and C. Yarur, Keller-Osserman estimates for some quasilinear elliptic systems,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 1547. Google Scholar

[3]

M. F. Bidaut-Véron and P. Grillot, Estimations a priori pour les singularitées isolées d'un système elliptique hamiltonien,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 325 (1997), 617. doi: 10.1016/S0764-4442(97)84771-4. Google Scholar

[4]

M. F. Bidaut-Véron and P. Grillot, Asymptotic behaviour of elliptic systems with mixed absorption and source terms,, \emph{Asymp. Anal.}, 19 (1999), 117. Google Scholar

[5]

M. F. Bidaut-Véron and P. Grillot, Singularities in elliptic systems with absorption terms,, \emph{Annali Scuola Norm. Sup. Pisa}, 28 (1999), 229. Google Scholar

[6]

H. Brezis and L. Véron, Removable singularities for some nonlinear elliptic equations,, \emph{Arch. Rat. Mech. Anal.}, 75 (1980), 1. doi: 10.1007/BF00284616. Google Scholar

[7]

F. C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials,, \emph{Mem. Amer. Math. Soc.}, 227 (2014). Google Scholar

[8]

N. Dancer and Y. Du, Effects of certain degeneracies in the predator-prey model,, \emph{SIAM J. Math. Anal.}, 34 (2002), 292. doi: 10.1137/S0036141001387598. Google Scholar

[9]

J. Dávila, L. Dupaigne, O. Goubet and S. Martínez, Boundary blow-up solutions of cooperative systems,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 26 (2009), 1767. doi: 10.1016/j.anihpc.2008.12.003. Google Scholar

[10]

J. I. Díaz, M. Lazzo and P. G. Schmidt, Large solutions for a system of elliptic equations arising from fluid dynamics,, \emph{SIAM J. Math. Anal.}, 37 (2005), 490. doi: 10.1137/S0036141004443555. Google Scholar

[11]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness,, \emph{Nonl. Anal.}, 20 (1993), 97. doi: 10.1016/0362-546X(93)90012-H. Google Scholar

[12]

Y. Du, Effects of a degeneracy in the competition model. Part I: classical and generalized steady-state solutions,, \emph{J. Diff. Eqns.}, 181 (2002), 92. doi: 10.1006/jdeq.2001.4074. Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model. Part II: perturbation and dynamical behaviour,, \emph{J. Diff. Eqns.}, 181 (2002), 133. doi: 10.1006/jdeq.2001.4075. Google Scholar

[14]

M. García-Huidobro and C. Yarur, Classification of positive singular solutions for a class of semilinear elliptic systems,, \emph{Adv. Diff. Eqns.}, 2 (1997), 383. Google Scholar

[15]

J. García-Melián, A remark on uniqueness of large solutions for elliptic systems of competitive type,, \emph{J. Math. Anal. Appl.}, 331 (2007), 608. doi: 10.1016/j.jmaa.2006.09.006. Google Scholar

[16]

J. García-Melián, Large solutions for an elliptic system of quasilinear equations,, \emph{J. Diff. Eqns.}, 245 (2008), 3735. doi: 10.1016/j.jde.2008.04.004. Google Scholar

[17]

J. García-Melián, R. Letelier Albornoz and J. Sabina de Lis, The solvability of an elliptic system under a singular boundary condition,, \emph{Proc. Roy. Soc. Edinburgh}, 136 (2006), 509. doi: 10.1017/S0308210500005047. Google Scholar

[18]

J. García-Melián and J. D. Rossi, Boundary blow-up solutions to elliptic systems of competitive type,, \emph{J. Diff. Eqns.}, 206 (2004), 156. doi: 10.1016/j.jde.2003.12.004. Google Scholar

[19]

J. García-Melián and A. Suárez, Existence and uniqueness of positive large solutions to some cooperative elliptic systems,, \emph{Adv. Nonl. Stud.}, 3 (2003), 193. Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[21]

J. López-Gómez, Coexistence and metacoexistence for competitive species,, \emph{Houston J. Math.}, 29 (2003), 483. Google Scholar

[22]

V. Rădulescu, Singular phenomena in nonlinear elliptic problems,, in \emph{Handbook of differential equations; stationary partial differential equations}, (2007). Google Scholar

[23]

L. Véron, Semilinear elliptic equations with uniform blow up on the boundary,, \emph{J. Anal. Math.}, 59 (1992), 231. doi: 10.1007/BF02790229. Google Scholar

[1]

Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure & Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531

[2]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[3]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[4]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

[5]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[6]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[7]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[8]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[9]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[10]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[11]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[12]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[13]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[14]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[15]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[16]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[17]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[18]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[19]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[20]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

[Back to Top]