# American Institute of Mathematical Sciences

March  2016, 15(2): 495-506. doi: 10.3934/cpaa.2016.15.495

## Reaction-Diffusion equations with spatially variable exponents and large diffusion

 1 Instituto de Matemática e Computaçã, Universidade Federal de Itajubá, 37500-903 Itajubá MG 2 Instituto de Matemática e Computação, Universidade Federal de Itajubá, 37500-903 - Itajubá - Minas Gerais, Brazil 3 Departamento de Matemática, Universidade Estadual de Maringá, 87020-900 Maringá, Paraná, Brazil

Received  April 2015 Revised  October 2015 Published  January 2016

In this work we prove continuity of solutions with respect to initial conditions and couple parameters and we prove joint upper semicontinuity of a family of global attractors for the problem \begin{eqnarray} &\frac{\partial u_{s}}{\partial t}(t)-\textrm{div}(D_s|\nabla u_{s}|^{p_s(x)-2}\nabla u_{s})+|u_s|^{p_s(x)-2}u_s=B(u_{s}(t)),\;\; t>0,\\ &u_{s}(0)=u_{0s}, \end{eqnarray} under homogeneous Neumann boundary conditions, $u_{0s}\in H:=L^2(\Omega),$ $\Omega\subset\mathbb{R}^n$ ($n\geq 1$) is a smooth bounded domain, $B:H\rightarrow H$ is a globally Lipschitz map with Lipschitz constant $L\geq 0$, $D_s\in[1,\infty)$, $p_s(\cdot)\in C(\bar{\Omega})$, $p_s^-:=\textrm{ess inf}\;p_s\geq p,$ $p_s^+:=\textrm{ess sup}\;p_s\leq a,$ for all $s\in \mathbb{N},$ when $p_s(\cdot)\rightarrow p$ in $L^\infty(\Omega)$ and $D_s\rightarrow\infty$ as $s\rightarrow\infty,$ with $a,p>2$ positive constants.
Citation: Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495
##### References:
 [1] H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert,, North-Holland Publishing Company, (1973). Google Scholar [2] H. Brézis, Analyse fonctionnelle:Théorie et applications,, Masson, (1983). Google Scholar [3] A. N. Carvalho, Infinite dimensional dynamics described by ordinary differential equations,, \emph{J. Differential Equation}, 116 (1995), 338. doi: 10.1006/jdeq.1995.1039. Google Scholar [4] A. N. Carvalho and J. K. Hale, Large diffusion with dispersion,, \emph{Nonlinear Anal.}, 17 (1991), 1139. doi: 10.1016/0362-546X(91)90233-Q. Google Scholar [5] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Math.}, 66 (2006), 1383. doi: 10.1137/050624522. Google Scholar [6] F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions,, \emph{Comput. Math. Appl.}, 53 (2007), 595. doi: 10.1016/j.camwa.2006.02.032. Google Scholar [7] E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of non-linear reaction-diffusion equations,, \emph{SIAM J. Appl. Math.}, 35 (1978), 1. Google Scholar [8] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Springer-Verlag, (2011). doi: 10.1007/978-3-642-18363-8. Google Scholar [9] X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems,, \emph{Nonlinear Anal.}, 52 (2003), 1843. doi: 10.1016/S0362-546X(02)00150-5. Google Scholar [10] Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)-$growth for image denoising,, \emph{Nonlinear Anal. Real World Appl.}, 12 (2011), 2904. doi: 10.1016/j.nonrwa.2011.04.015. Google Scholar [11] J. K. Hale, Large diffusivity and asymptotic behavior in parabolic systems,, \emph{J. Math. Anal. Appl.}, 118 (1986), 455. doi: 10.1016/0022-247X(86)90273-8. Google Scholar [12] K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological materials,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59. Google Scholar [13] M. Růžička, Flow of shear dependent electrorheological fluids,, \emph{C. R. Acad. Sci. Paris S\'er. I.}, 329 (1999), 393. doi: 10.1016/S0764-4442(00)88612-7. Google Scholar [14] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, in Lectures Notes in Mathematics (vol. 1748), (1748). doi: 10.1007/BFb0104029. Google Scholar [15] J. Simsen, A global attractor for a $p(x)$-Laplacian inclusion,, \emph{C. R. Acad. Sci. Paris S\'er. I.}, 351 (2013), 87. doi: 10.1016/j.crma.2013.02.009. Google Scholar [16] J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion,, \emph{Nonlinear Anal.}, 71 (2009), 4609. doi: 10.1016/j.na.2009.03.041. Google Scholar [17] J. Simsen and M. S. Simsen, PDE and ODE limit problems for $p(x)$-Laplacian parabolic equations,, \emph{J. Math. Anal. Appl.}, 383 (2011), 71. doi: 10.1016/j.jmaa.2011.05.003. Google Scholar [18] J. Simsen, M. S. Simsen and M. R. T. Primo, Continuity of the flows and upper semicontinuity of global attractors for $p_s(x)$-Laplacian parabolic problems,, \emph{J. Math. Anal. Appl.}, 398 (2013), 138. doi: 10.1016/j.jmaa.2012.08.047. Google Scholar [19] J. Simsen, M. S. Simsen and M. R. T. Primo, On $p_s(x)$-Laplacian parabolic problems with non-globally Lipschitz forcing term,, \emph{Z. Anal. Anwend.}, 33 (2014), 447. doi: 10.4171/ZAA/1522. Google Scholar [20] J. Simsen, M. S. Simsen and F. B. Rocha, Existence of solutions for some classes of parabolic problems involving variable exponents,, \emph{Nonlinear Stud.}, 21 (2014), 113. Google Scholar [21] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

show all references

##### References:
 [1] H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert,, North-Holland Publishing Company, (1973). Google Scholar [2] H. Brézis, Analyse fonctionnelle:Théorie et applications,, Masson, (1983). Google Scholar [3] A. N. Carvalho, Infinite dimensional dynamics described by ordinary differential equations,, \emph{J. Differential Equation}, 116 (1995), 338. doi: 10.1006/jdeq.1995.1039. Google Scholar [4] A. N. Carvalho and J. K. Hale, Large diffusion with dispersion,, \emph{Nonlinear Anal.}, 17 (1991), 1139. doi: 10.1016/0362-546X(91)90233-Q. Google Scholar [5] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Math.}, 66 (2006), 1383. doi: 10.1137/050624522. Google Scholar [6] F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions,, \emph{Comput. Math. Appl.}, 53 (2007), 595. doi: 10.1016/j.camwa.2006.02.032. Google Scholar [7] E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of non-linear reaction-diffusion equations,, \emph{SIAM J. Appl. Math.}, 35 (1978), 1. Google Scholar [8] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Springer-Verlag, (2011). doi: 10.1007/978-3-642-18363-8. Google Scholar [9] X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems,, \emph{Nonlinear Anal.}, 52 (2003), 1843. doi: 10.1016/S0362-546X(02)00150-5. Google Scholar [10] Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)-$growth for image denoising,, \emph{Nonlinear Anal. Real World Appl.}, 12 (2011), 2904. doi: 10.1016/j.nonrwa.2011.04.015. Google Scholar [11] J. K. Hale, Large diffusivity and asymptotic behavior in parabolic systems,, \emph{J. Math. Anal. Appl.}, 118 (1986), 455. doi: 10.1016/0022-247X(86)90273-8. Google Scholar [12] K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological materials,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59. Google Scholar [13] M. Růžička, Flow of shear dependent electrorheological fluids,, \emph{C. R. Acad. Sci. Paris S\'er. I.}, 329 (1999), 393. doi: 10.1016/S0764-4442(00)88612-7. Google Scholar [14] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, in Lectures Notes in Mathematics (vol. 1748), (1748). doi: 10.1007/BFb0104029. Google Scholar [15] J. Simsen, A global attractor for a $p(x)$-Laplacian inclusion,, \emph{C. R. Acad. Sci. Paris S\'er. I.}, 351 (2013), 87. doi: 10.1016/j.crma.2013.02.009. Google Scholar [16] J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion,, \emph{Nonlinear Anal.}, 71 (2009), 4609. doi: 10.1016/j.na.2009.03.041. Google Scholar [17] J. Simsen and M. S. Simsen, PDE and ODE limit problems for $p(x)$-Laplacian parabolic equations,, \emph{J. Math. Anal. Appl.}, 383 (2011), 71. doi: 10.1016/j.jmaa.2011.05.003. Google Scholar [18] J. Simsen, M. S. Simsen and M. R. T. Primo, Continuity of the flows and upper semicontinuity of global attractors for $p_s(x)$-Laplacian parabolic problems,, \emph{J. Math. Anal. Appl.}, 398 (2013), 138. doi: 10.1016/j.jmaa.2012.08.047. Google Scholar [19] J. Simsen, M. S. Simsen and M. R. T. Primo, On $p_s(x)$-Laplacian parabolic problems with non-globally Lipschitz forcing term,, \emph{Z. Anal. Anwend.}, 33 (2014), 447. doi: 10.4171/ZAA/1522. Google Scholar [20] J. Simsen, M. S. Simsen and F. B. Rocha, Existence of solutions for some classes of parabolic problems involving variable exponents,, \emph{Nonlinear Stud.}, 21 (2014), 113. Google Scholar [21] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar
 [1] Antonio Carlos Fernandes, Marcela Carvalho Gonçcalves, Jacson Simsen. Non-autonomous reaction-diffusion equations with variable exponents and large diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1485-1510. doi: 10.3934/dcdsb.2018217 [2] Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653 [3] Peter E. Kloeden, Meihua Yang. Forward attracting sets of reaction-diffusion equations on variable domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1259-1271. doi: 10.3934/dcdsb.2019015 [4] Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036 [5] Gaocheng Yue. Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5673-5694. doi: 10.3934/dcdsb.2019101 [6] Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1 [7] Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079 [8] Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543 [9] Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032 [10] Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201 [11] Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399 [12] Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875 [13] Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891 [14] Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114 [15] Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301 [16] Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43 [17] Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281 [18] Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083 [19] Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189 [20] María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

2018 Impact Factor: 0.925