• Previous Article
    Existence and nonexistence of positive solutions to an integral system involving Wolff potential
  • CPAA Home
  • This Issue
  • Next Article
    Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$
March  2016, 15(2): 399-412. doi: 10.3934/cpaa.2016.15.399

Boundary value problems for a semilinear elliptic equation with singular nonlinearity

1. 

Department of Mathematics, Henan Normal University, Xinxiang, 453007, China

Received  March 2015 Revised  October 2015 Published  January 2016

Structure of solutions of boundary value problems for a semilinear elliptic equation with singular nonlinearity is studied. It is seen that the structure of solutions relies on the boundary values. The global branches of solutions of the boundary value problems are established. Moreover, some Liouville type results for the entire solutions of the equation are also obtained.
Citation: Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399
References:
[1]

P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity,, \emph{Comm. Pure Appl. Math.}, LX (2007), 1731. doi: 10.1002/cpa.20189. Google Scholar

[2]

G. Flores, G. A. Mercado and J. A. Pelesko, Dynamics and touchdown in electrostatic MEMS,, \emph{Proceedings of ICMEMS}, (2003), 182. Google Scholar

[3]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case,, \emph{SIAM J. Math.Anal.}, 38 (2007), 1423. doi: 10.1137/050647803. Google Scholar

[4]

Z. M. Guo and L. Ma, Finite Morse index steady states of van der Waals force driven thin film equations,, \emph{J. Math. Anal. Appl.}, 368 (2010), 559. doi: 10.1016/j.jmaa.2010.04.012. Google Scholar

[5]

Z. M. Guo and X. Z. Peng, On the structure of positive solutions to an elliptic problem with a singular nonlinearity,, \emph{J. Math. Anal.Appl.}, 354 (2009), 134. doi: 10.1016/j.jmaa.2009.01.001. Google Scholar

[6]

Z. M. Guo and J. C. Wei, Ausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity,, \emph{Manuscripta Math.}, 120 (2006), 193. doi: 10.1007/s00229-006-0001-2. Google Scholar

[7]

Z. M. Guo and J. C. Wei, Symmetry of non-negative solutions of a semilinear elliptic equation with singular nonlinearity,, \emph{Proc. R. Soc. Edinburgh}, 137A (2007), 963. doi: 10.1017/S0308210505001083. Google Scholar

[8]

Z. M. Guo and J. C. Wei, The Cauchy problem for a reaction-diffusion equation with a singular nonlinearity,, \emph{J. Differential Equations}, 240 (2007), 279. doi: 10.1016/j.jde.2007.06.012. Google Scholar

[9]

Z. M. Guo and J. C. Wei, Infinitely many turning points for an elliptic problem with a singular nonlinearity,, \emph{J. London Math. Soc.}, 78 (2008), 21. doi: 10.1112/jlms/jdm121. Google Scholar

[10]

Z. M. Guo and D. Ye and F. Zhou, Existence of singular positive solutions for some semilinear elliptic equations,, \emph{Pacific J. Math.}, 236 (2008), 57. doi: 10.2140/pjm.2008.236.57. Google Scholar

[11]

H. Jiang and W. M. Ni, On steady states of van der Waals force driven thin film equations,, \emph{European J. Appl. Math.}, 18 (2007), 153. doi: 10.1017/S0956792507006936. Google Scholar

[12]

F. H. Lin and Y. S. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation,, \emph{Proc. R. Soc. Lond., 463 (2007), 1323. doi: 10.1098/rspa.2007.1816. Google Scholar

[13]

L. Ma and J. C. Wei, Properties of positive solutions to an elliptic equation with negative exponent,, \emph{J. Funct. Anal.}, 254 (2008), 1058. doi: 10.1016/j.jfa.2007.09.017. Google Scholar

[14]

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties,, \emph{SIAM J. Appl. Math.}, 62 (2002), 888. doi: 10.1137/S0036139900381079. Google Scholar

[15]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS,, \textbf (2002)., (2002). Google Scholar

show all references

References:
[1]

P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity,, \emph{Comm. Pure Appl. Math.}, LX (2007), 1731. doi: 10.1002/cpa.20189. Google Scholar

[2]

G. Flores, G. A. Mercado and J. A. Pelesko, Dynamics and touchdown in electrostatic MEMS,, \emph{Proceedings of ICMEMS}, (2003), 182. Google Scholar

[3]

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case,, \emph{SIAM J. Math.Anal.}, 38 (2007), 1423. doi: 10.1137/050647803. Google Scholar

[4]

Z. M. Guo and L. Ma, Finite Morse index steady states of van der Waals force driven thin film equations,, \emph{J. Math. Anal. Appl.}, 368 (2010), 559. doi: 10.1016/j.jmaa.2010.04.012. Google Scholar

[5]

Z. M. Guo and X. Z. Peng, On the structure of positive solutions to an elliptic problem with a singular nonlinearity,, \emph{J. Math. Anal.Appl.}, 354 (2009), 134. doi: 10.1016/j.jmaa.2009.01.001. Google Scholar

[6]

Z. M. Guo and J. C. Wei, Ausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity,, \emph{Manuscripta Math.}, 120 (2006), 193. doi: 10.1007/s00229-006-0001-2. Google Scholar

[7]

Z. M. Guo and J. C. Wei, Symmetry of non-negative solutions of a semilinear elliptic equation with singular nonlinearity,, \emph{Proc. R. Soc. Edinburgh}, 137A (2007), 963. doi: 10.1017/S0308210505001083. Google Scholar

[8]

Z. M. Guo and J. C. Wei, The Cauchy problem for a reaction-diffusion equation with a singular nonlinearity,, \emph{J. Differential Equations}, 240 (2007), 279. doi: 10.1016/j.jde.2007.06.012. Google Scholar

[9]

Z. M. Guo and J. C. Wei, Infinitely many turning points for an elliptic problem with a singular nonlinearity,, \emph{J. London Math. Soc.}, 78 (2008), 21. doi: 10.1112/jlms/jdm121. Google Scholar

[10]

Z. M. Guo and D. Ye and F. Zhou, Existence of singular positive solutions for some semilinear elliptic equations,, \emph{Pacific J. Math.}, 236 (2008), 57. doi: 10.2140/pjm.2008.236.57. Google Scholar

[11]

H. Jiang and W. M. Ni, On steady states of van der Waals force driven thin film equations,, \emph{European J. Appl. Math.}, 18 (2007), 153. doi: 10.1017/S0956792507006936. Google Scholar

[12]

F. H. Lin and Y. S. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation,, \emph{Proc. R. Soc. Lond., 463 (2007), 1323. doi: 10.1098/rspa.2007.1816. Google Scholar

[13]

L. Ma and J. C. Wei, Properties of positive solutions to an elliptic equation with negative exponent,, \emph{J. Funct. Anal.}, 254 (2008), 1058. doi: 10.1016/j.jfa.2007.09.017. Google Scholar

[14]

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties,, \emph{SIAM J. Appl. Math.}, 62 (2002), 888. doi: 10.1137/S0036139900381079. Google Scholar

[15]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS,, \textbf (2002)., (2002). Google Scholar

[1]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[2]

Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052

[3]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[4]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[5]

Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

[6]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

[7]

L. Ke. Boundary behaviors for solutions of singular elliptic equations. Conference Publications, 1998, 1998 (Special) : 388-396. doi: 10.3934/proc.1998.1998.388

[8]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[9]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[10]

Alfonso Castro, Rosa Pardo. Branches of positive solutions of subcritical elliptic equations in convex domains. Conference Publications, 2015, 2015 (special) : 230-238. doi: 10.3934/proc.2015.0230

[11]

Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567

[12]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[13]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[14]

Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798

[15]

Asadollah Aghajani. Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3521-3530. doi: 10.3934/dcds.2017150

[16]

Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009

[17]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure & Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[18]

Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607

[19]

Hideo Ikeda, Koji Kondo, Hisashi Okamoto, Shoji Yotsutani. On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows. Communications on Pure & Applied Analysis, 2003, 2 (3) : 381-390. doi: 10.3934/cpaa.2003.2.381

[20]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]