• Previous Article
    On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions
  • CPAA Home
  • This Issue
  • Next Article
    Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip
July  2016, 15(4): 1451-1469. doi: 10.3934/cpaa.2016.15.1451

Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species

1. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617

2. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617

Received  July 2014 Revised  December 2015 Published  April 2016

In reaction-diffusion models describing the interaction between the invading grey squirrel and the established red squirrel in Britain, Okubo et al. ([19]) found that in certain parameter regimes, the profiles of the two species in a wave propagation solution can be determined via a solution of the KPP equation. Motivated by their result, we employ an elementary approach based on the maximum principle for elliptic inequalities coupled with estimates of a total density of the three species to establish the nonexistence of traveling wave solutions for Lotka-Volterra systems of three competing species. Applying our estimates to the May-Leonard model, we obtain upper and lower bounds for the total density of a solution to this system. For the existence of traveling wave solutions to the Lotka-Volterra three-species competing system, we find new semi-exact solutions by virtue of functions other than hyperbolic tangent functions, which are used in constructing one-hump exact traveling wave solutions in [2]. Moreover, new two-hump semi-exact traveling wave solutions different from the ones found in [1] are constructed.
Citation: Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451
References:
[1]

C.-C. Chen, L.-C. Hung, M. Mimura, M. Tohma and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems,, \emph{Hiroshima Math J.}, 43 (2013), 176.

[2]

C.-C. Chen, L.-C. Hung, M. Mimura and D. Ueyama, Exact travelling wave solutions of three-species competition-diffusion systems,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 17 (2012), 2653. doi: 10.3934/dcdsb.2012.17.2653.

[3]

Y.-S. Chiou, Travelling wave solutions for reaction-diffusion-advection equations,, Master Thesis, (2010), 1.

[4]

P. de Mottoni, Qualitative analysis for some quasilinear parabolic systems,, \emph{Institute of Math., 11 (1979).

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system,, \emph{Nonlinear Anal. Real World Appl.}, 4 (2003), 503. doi: 10.1016/S1468-1218(02)00077-9.

[6]

L.-C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species,, \emph{Jpn. J. Ind. Appl. Math.}, 29 (2012), 237. doi: 10.1007/s13160-012-0056-2.

[7]

H. Ikeda, Multiple travelling wave solutions of three-component systems with competition and diffusion,, \emph{Methods Appl. Anal.}, 8 (2001), 479.

[8]

H. Ikeda, Travelling wave solutions of three-component systems with competition and diffusion,, \emph{Math. J. Toyama Univ.}, 24 (2001), 37.

[9]

H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion,, \emph{Hiroshima Math. J.}, 32 (2002), 87.

[10]

H. Ikeda, Dynamics of weakly interacting front and back waves in three-component systems,, \emph{Toyama Math. J.}, 30 (2007), 1.

[11]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, \emph{SIAM J. Math. Anal.}, 26 (1995), 340. doi: 10.1137/S0036141093244556.

[12]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, \emph{Nonlinear Anal.}, 28 (1997), 145. doi: 10.1016/0362-546X(95)00142-I.

[13]

A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem,, \emph{Bull. Math}, 1 (1937), 1.

[14]

A. W. Leung, X. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 15 (2011), 171. doi: 10.3934/dcdsb.2011.15.171.

[15]

A. W. Leung, X. Hou, and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities,, \emph{J. Math. Anal. Appl.}, 338 (2008), 902. doi: 10.1016/j.jmaa.2007.05.066.

[16]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, \emph{SIAM J. Appl. Math.}, 29 (1975), 243.

[17]

P. D. Miller, Nonmonotone waves in a three species reaction-diffusion model,, \emph{Methods Appl. Anal.}, 4 (1997), 261.

[18]

P. D. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 129 (1999), 125. doi: 10.1017/S0308210500027499.

[19]

A. Okubo, P. Maini, M. Williamson and J. Murray, On the spatial spread of the grey squirrel in britain,, \emph{Proceedings of the Royal Society of London. B. Biological Sciences}, 238 (1989), 113.

[20]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,, \emph{Hiroshima Math. J.}, 30 (2000), 257.

[21]

M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations,, \emph{Japan J. Indust. Appl. Math.}, 18 (2001), 657. doi: 10.1007/BF03167410.

show all references

References:
[1]

C.-C. Chen, L.-C. Hung, M. Mimura, M. Tohma and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems,, \emph{Hiroshima Math J.}, 43 (2013), 176.

[2]

C.-C. Chen, L.-C. Hung, M. Mimura and D. Ueyama, Exact travelling wave solutions of three-species competition-diffusion systems,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 17 (2012), 2653. doi: 10.3934/dcdsb.2012.17.2653.

[3]

Y.-S. Chiou, Travelling wave solutions for reaction-diffusion-advection equations,, Master Thesis, (2010), 1.

[4]

P. de Mottoni, Qualitative analysis for some quasilinear parabolic systems,, \emph{Institute of Math., 11 (1979).

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system,, \emph{Nonlinear Anal. Real World Appl.}, 4 (2003), 503. doi: 10.1016/S1468-1218(02)00077-9.

[6]

L.-C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species,, \emph{Jpn. J. Ind. Appl. Math.}, 29 (2012), 237. doi: 10.1007/s13160-012-0056-2.

[7]

H. Ikeda, Multiple travelling wave solutions of three-component systems with competition and diffusion,, \emph{Methods Appl. Anal.}, 8 (2001), 479.

[8]

H. Ikeda, Travelling wave solutions of three-component systems with competition and diffusion,, \emph{Math. J. Toyama Univ.}, 24 (2001), 37.

[9]

H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion,, \emph{Hiroshima Math. J.}, 32 (2002), 87.

[10]

H. Ikeda, Dynamics of weakly interacting front and back waves in three-component systems,, \emph{Toyama Math. J.}, 30 (2007), 1.

[11]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, \emph{SIAM J. Math. Anal.}, 26 (1995), 340. doi: 10.1137/S0036141093244556.

[12]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, \emph{Nonlinear Anal.}, 28 (1997), 145. doi: 10.1016/0362-546X(95)00142-I.

[13]

A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem,, \emph{Bull. Math}, 1 (1937), 1.

[14]

A. W. Leung, X. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 15 (2011), 171. doi: 10.3934/dcdsb.2011.15.171.

[15]

A. W. Leung, X. Hou, and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities,, \emph{J. Math. Anal. Appl.}, 338 (2008), 902. doi: 10.1016/j.jmaa.2007.05.066.

[16]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, \emph{SIAM J. Appl. Math.}, 29 (1975), 243.

[17]

P. D. Miller, Nonmonotone waves in a three species reaction-diffusion model,, \emph{Methods Appl. Anal.}, 4 (1997), 261.

[18]

P. D. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 129 (1999), 125. doi: 10.1017/S0308210500027499.

[19]

A. Okubo, P. Maini, M. Williamson and J. Murray, On the spatial spread of the grey squirrel in britain,, \emph{Proceedings of the Royal Society of London. B. Biological Sciences}, 238 (1989), 113.

[20]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,, \emph{Hiroshima Math. J.}, 30 (2000), 257.

[21]

M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations,, \emph{Japan J. Indust. Appl. Math.}, 18 (2001), 657. doi: 10.1007/BF03167410.

[1]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[2]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[3]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[4]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[5]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[6]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[7]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[8]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[9]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[10]

Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175

[11]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[12]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[13]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[14]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[15]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[16]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[17]

Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137

[18]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[19]

Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1

[20]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]