July  2016, 15(4): 1265-1283. doi: 10.3934/cpaa.2016.15.1265

The lifespan of solutions to semilinear damped wave equations in one space dimension

1. 

Department of Mathematics, Hokkaido University, Sapporo, 060-0810

Received  September 2015 Revised  January 2016 Published  April 2016

In the present paper, we consider the initial value problem for semilinear damped wave equations in one space dimension. Wakasugi [7] have obtained an upper bound of the lifespan for the problem only in the subcritical case. On the other hand, D'Abbicco $\&$ Lucente $\&$ Reissig [3] showed a blow-up result in the critical case. The aim of this paper is to give an estimate of the upper bound of the lifespan in the critical case, and show the optimality of the upper bound. Also, we derive an estimate of the lower bound of the lifespan in the subcritical case which shows the optimality of the upper bound in [7]. Moreover, we show that the critical exponent changes when the initial data are odd functions.
Citation: Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265
References:
[1]

R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for p-q systems of nonlinear wave equations in three space dimensions,, \emph{J. Differential Equations}, 167 (2000), 87. doi: 10.1006/jdeq.2000.3766.

[2]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, \emph{Mathematical Methods in Applied Sciences}, 38 (2015), 1032. doi: 10.1002/mma.3126.

[3]

M. D'Abbicco, S. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping,, \emph{Journal of Differential Equations}, 259 (2015), 5040. doi: 10.1016/j.jde.2015.06.018.

[4]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, \emph{Manuscripta Math.}, 28 (1979), 235. doi: 10.1007/BF01647974.

[5]

H. Kubo, A. Osaka and M. Yazici, Global existence and blow-up for wave equations with weighted nonlinear terms in one space dimension,, \emph{Interdisciplinary Information Sciences}, 19 (2013), 143. doi: 10.4036/iis.2013.143.

[6]

K. Wakasa, The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension,, \emph{Hokkaido Mathematical Journal}, ().

[7]

Y. Wakasugi, On the Diffusive Structure for the Damped Wave Equation with Variable Coefficients,, Doctoral thesis, (2014).

show all references

References:
[1]

R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for p-q systems of nonlinear wave equations in three space dimensions,, \emph{J. Differential Equations}, 167 (2000), 87. doi: 10.1006/jdeq.2000.3766.

[2]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, \emph{Mathematical Methods in Applied Sciences}, 38 (2015), 1032. doi: 10.1002/mma.3126.

[3]

M. D'Abbicco, S. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping,, \emph{Journal of Differential Equations}, 259 (2015), 5040. doi: 10.1016/j.jde.2015.06.018.

[4]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, \emph{Manuscripta Math.}, 28 (1979), 235. doi: 10.1007/BF01647974.

[5]

H. Kubo, A. Osaka and M. Yazici, Global existence and blow-up for wave equations with weighted nonlinear terms in one space dimension,, \emph{Interdisciplinary Information Sciences}, 19 (2013), 143. doi: 10.4036/iis.2013.143.

[6]

K. Wakasa, The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension,, \emph{Hokkaido Mathematical Journal}, ().

[7]

Y. Wakasugi, On the Diffusive Structure for the Damped Wave Equation with Variable Coefficients,, Doctoral thesis, (2014).

[1]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[2]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[3]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[4]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[5]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[6]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[7]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[8]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[9]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[10]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[11]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[12]

Yuji Sagawa, Hideaki Sunagawa. The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5743-5761. doi: 10.3934/dcds.2016052

[13]

Shengfan Zhou, Linshan Wang. Kernel sections for damped non-autonomous wave equations with critical exponent. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 399-412. doi: 10.3934/dcds.2003.9.399

[14]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[15]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[16]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[17]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[18]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[19]

Hideo Kubo. On the critical decay and power for semilinear wave equtions in odd space dimensions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 173-190. doi: 10.3934/dcds.1996.2.173

[20]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]