July  2016, 15(4): 1179-1191. doi: 10.3934/cpaa.2016.15.1179

On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity

1. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária - Ilha do Fundão, Caixa Postal 68530, 21941-909 Rio de Janeiro, RJ, Brazil

Received  May 2015 Revised  February 2016 Published  April 2016

This paper is concerned with the initial boundary value problem of certain 2D MHD-$\alpha$ equations without velocity viscosity over a bounded domain with smooth boundary. We show that the equations have a unique global smooth solution $(u,b)$ for $W^{4,p}\times H^4$ initial data and physical boundary condition.
Citation: Jitao Liu. On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1179-1191. doi: 10.3934/cpaa.2016.15.1179
References:
[1]

A.V. Busuioc and T.S. Ratiu, The second grade fluid and averaged Euler equations with Navier-slip boundary conditions,, \emph{Nonlinearity}, 16 (2003), 1119. Google Scholar

[2]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, \emph{Comm. Math. Phys.}, 184 (1997), 443. doi: 10.1007/s002200050067. Google Scholar

[3]

E. Casella, P. Secchi and P. Trebeschi, Global classical solutions for MHD system,, \emph{J. Math. Fluid Mech.}, 5 (2003), 70. doi: 10.1007/s000210300003. Google Scholar

[4]

D. Cioranescu and V. Girault, Weak and classical solutions of a family of second grade fluids,, \emph{Int. J. Non-Linear Mech.}, 32 (1997), 317. doi: 10.1016/S0020-7462(96)00056-X. Google Scholar

[5]

L.C. Evans, Partial Differential Equations,, 2$^{nd}$ edition, (2010). Google Scholar

[6]

C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation (French),, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 5 (1978), 28. Google Scholar

[7]

J. Fan and T. Ozawa, Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms,, \emph{J. Math. Fluid Mech.}, 12 (2010), 306. doi: 10.1007/s00021-008-0289-7. Google Scholar

[8]

D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler-Poincará equations and semidirect products with applications to continuum theories,, \emph{Adv. Math.}, 137 (1998), 1. doi: 10.1006/aima.1998.1721. Google Scholar

[9]

D.D. Holm, Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics,, \emph{Chaos}, 12 (2002), 518. doi: 10.1063/1.1460941. Google Scholar

[10]

G.D. Galdi and A. Sequeira, A further existence results for classical solutions of the equations of a second-grade fluid,, \emph{Arch. Rational Mech. Anal.}, 128 (1994), 297. doi: 10.1007/BF00387710. Google Scholar

[11]

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1977). Google Scholar

[12]

H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations,, \emph{Tohoku Math. J.}, 41 (1989), 471. doi: 10.2748/tmj/1178227774. Google Scholar

[13]

O.A. Ladyzhenskaya, V.A. Solonnikov and N.U. Uraliceva, Linear and Quasi-linear Equations of Parabolic Type,, American Mathematical Society, (1968). Google Scholar

[14]

J.S. Linshiz and E.S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models,, \emph{J. Math. Phys.}, 48 (2007). doi: 10.1063/1.2360145. Google Scholar

[15]

M.C. Lopes Filho, H.J. Nussenzveig Lopes, E.S. Titi and A. Zang, Convergence of the 2D Euler-$\alpha$ to Euler equations in the Dirichlet case: indifference to boundary layers,, \emph{Physica D}, 292-293 (2015), 292. doi: 10.1016/j.physd.2014.11.001. Google Scholar

[16]

L. Nirenberg, On elliptic partial differential equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 13 (1959), 115. Google Scholar

[17]

K. Yamazaki, A remark on the two-dimensional Magnetohydrodynamic-alpha system,, preprint, (). Google Scholar

[18]

J. Zhao and M. Zhu, Global regularity for the incompressible MHD-$\alpha$ system with fractional diffusion,, \emph{Appl. Math. Lett.}, 29 (2014), 26. doi: 10.1016/j.aml.2013.10.009. Google Scholar

show all references

References:
[1]

A.V. Busuioc and T.S. Ratiu, The second grade fluid and averaged Euler equations with Navier-slip boundary conditions,, \emph{Nonlinearity}, 16 (2003), 1119. Google Scholar

[2]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, \emph{Comm. Math. Phys.}, 184 (1997), 443. doi: 10.1007/s002200050067. Google Scholar

[3]

E. Casella, P. Secchi and P. Trebeschi, Global classical solutions for MHD system,, \emph{J. Math. Fluid Mech.}, 5 (2003), 70. doi: 10.1007/s000210300003. Google Scholar

[4]

D. Cioranescu and V. Girault, Weak and classical solutions of a family of second grade fluids,, \emph{Int. J. Non-Linear Mech.}, 32 (1997), 317. doi: 10.1016/S0020-7462(96)00056-X. Google Scholar

[5]

L.C. Evans, Partial Differential Equations,, 2$^{nd}$ edition, (2010). Google Scholar

[6]

C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation (French),, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 5 (1978), 28. Google Scholar

[7]

J. Fan and T. Ozawa, Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms,, \emph{J. Math. Fluid Mech.}, 12 (2010), 306. doi: 10.1007/s00021-008-0289-7. Google Scholar

[8]

D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler-Poincará equations and semidirect products with applications to continuum theories,, \emph{Adv. Math.}, 137 (1998), 1. doi: 10.1006/aima.1998.1721. Google Scholar

[9]

D.D. Holm, Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics,, \emph{Chaos}, 12 (2002), 518. doi: 10.1063/1.1460941. Google Scholar

[10]

G.D. Galdi and A. Sequeira, A further existence results for classical solutions of the equations of a second-grade fluid,, \emph{Arch. Rational Mech. Anal.}, 128 (1994), 297. doi: 10.1007/BF00387710. Google Scholar

[11]

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1977). Google Scholar

[12]

H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations,, \emph{Tohoku Math. J.}, 41 (1989), 471. doi: 10.2748/tmj/1178227774. Google Scholar

[13]

O.A. Ladyzhenskaya, V.A. Solonnikov and N.U. Uraliceva, Linear and Quasi-linear Equations of Parabolic Type,, American Mathematical Society, (1968). Google Scholar

[14]

J.S. Linshiz and E.S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models,, \emph{J. Math. Phys.}, 48 (2007). doi: 10.1063/1.2360145. Google Scholar

[15]

M.C. Lopes Filho, H.J. Nussenzveig Lopes, E.S. Titi and A. Zang, Convergence of the 2D Euler-$\alpha$ to Euler equations in the Dirichlet case: indifference to boundary layers,, \emph{Physica D}, 292-293 (2015), 292. doi: 10.1016/j.physd.2014.11.001. Google Scholar

[16]

L. Nirenberg, On elliptic partial differential equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 13 (1959), 115. Google Scholar

[17]

K. Yamazaki, A remark on the two-dimensional Magnetohydrodynamic-alpha system,, preprint, (). Google Scholar

[18]

J. Zhao and M. Zhu, Global regularity for the incompressible MHD-$\alpha$ system with fractional diffusion,, \emph{Appl. Math. Lett.}, 29 (2014), 26. doi: 10.1016/j.aml.2013.10.009. Google Scholar

[1]

Jishan Fan, Tohru Ozawa. Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model. Conference Publications, 2011, 2011 (Special) : 400-409. doi: 10.3934/proc.2011.2011.400

[2]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[3]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[4]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[5]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[6]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[7]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[8]

Dongfen Bian. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1591-1611. doi: 10.3934/dcdss.2016065

[9]

Jishan Fan, Tohru Ozawa. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic & Related Models, 2009, 2 (2) : 293-305. doi: 10.3934/krm.2009.2.293

[10]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[11]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[12]

Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601

[13]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[14]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[15]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[16]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[17]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[18]

Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020001

[19]

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks & Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727

[20]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]