May  2015, 14(3): 843-859. doi: 10.3934/cpaa.2015.14.843

Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves

1. 

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan

Received  April 2014 Revised  December 2014 Published  March 2015

We consider the fourth order nonlinear Schrödinger type equation (4NLS) which arises in context of the motion of vortex filament. The purposes of this paper are twofold. Firstly, we consider the initial value problem for (4NLS) under the periodic boundary condition. By refining the modified energy method used in our previous paper [23], we prove the unique existence of the global solution for (4NLS) in the energy space $H_{p e r}^2(0,2L)$ with $L>0$. Secondly, we study the stability property of periodic standing waves for (4NLS). Using the spectrum properties of the Schrödinger operators associated to the periodic standing wave developed by Angulo [1], we prove that standing wave of dnoidal type is orbitally stable under the time evolution by (4NLS).
Citation: Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843
References:
[1]

P. J. Angulo, Nonlinear stability of periodic travelling wave solutions to the Schrödinger and the modified Korteweg-de Vries equations,, \emph{J. Differential Equations}, 235 (2007), 1. doi: 10.1016/j.jde.2007.01.003. Google Scholar

[2]

T. B. Benjamin, The stability of solitary waves,, \emph{Proc. Roy. Soc. (London) Ser. A}, 328 (1972), 153. Google Scholar

[3]

J. L. Bona, On the stability theory of solitary waves,, \emph{Proc. Roy. Soc. London Ser. A}, 344 (1975), 363. Google Scholar

[4]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation,, \emph{Philos. Trans. Roy. Soc. London Ser. A}, 278 (1975), 555. Google Scholar

[5]

T. J. Bridges and G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations,, \emph{SIAM J. Math. Anal.}, 33 (2002), 1356. doi: 10.1137/S0036141099361494. Google Scholar

[6]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists,, Springer-Verlag, (1971). Google Scholar

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, \emph{Comm. Math. Phys.}, 85 (1982), 549. Google Scholar

[8]

L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape,, \emph{Rend, 22 (1906), 117. Google Scholar

[9]

Y. Fukumoto, Motion of a curved vortex filament: higher-order asymptotics,, In \emph{Proc. of IUTAM Symposium on Geometry and Statistics of Turbulence} (eds. T. Kambe, (2001), 211. doi: 10.1007/978-94-015-9638-1_25. Google Scholar

[10]

Y. Fukumoto and H. K. Moffatt, Motion and expansion of a viscous vortex ring. Part I. A higher-order asymptotic formula for the velocity,, \emph{J. Fluid. Mech.}, 417 (2000), 1. doi: 10.1017/S0022112000008995. Google Scholar

[11]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, \emph{J. Funct. Anal.}, 74 (1987), 160. doi: 10.1016/0022-1236(87)90044-9. Google Scholar

[12]

H. Hasimoto, A soliton on a vortex filament,, \emph{J. Fluid Mech.}, 51 (1972), 477. Google Scholar

[13]

S. M. Hoseini and T. R. Marchant, Solitary wave interaction for a higher-order nonlinear Schrödinger equation,, \emph{IMA J. Appl. Math.}, 72 (2007), 206. doi: 10.1093/imamat/hxl034. Google Scholar

[14]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1493. doi: 10.1080/03605300701629385. Google Scholar

[15]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, \emph{Indiana Univ. math J.}, 40 (1991), 33. doi: 10.1512/iumj.1991.40.40003. Google Scholar

[16]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices,, \emph{Duke Math J.}, 71 (1993), 1. doi: 10.1215/S0012-7094-93-07101-3. Google Scholar

[17]

S. Kida, A vortex filament moving without change of form,, \emph{J. Fluid Mech.}, 112 (1981), 397. doi: 10.1017/S0022112081000475. Google Scholar

[18]

S. Kwon, On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map,, \emph{J. Differential Equations}, 245 (2008), 2627. doi: 10.1016/j.jde.2008.03.020. Google Scholar

[19]

J. Langer and R. Perline, Poisson geometry of the filament equation,, \emph{J. Nonlinear Sci.}, 1 (1991), 71. doi: 10.1007/BF01209148. Google Scholar

[20]

S. Levandosky, Stability of solitary waves of a fifth-order water wave model,, \emph{Phys. D}, 227 (2007), 162. doi: 10.1016/j.physd.2007.01.006. Google Scholar

[21]

M. Maeda and J. Segata, Existence and stability of standing waves of fourth order nonlinear Schrödinger type equation related to vortex filament,, \emph{Funkcial. Ekvac.}, 54 (2011), 1. doi: 10.1619/fesi.54.1. Google Scholar

[22]

A. Moyua and L. Vega, Bounds for the maximal function associated to periodic solutions of one-dimensional dispersive equations,, \emph{Bull. Lond. Math. Soc.}, 40 (2008), 117. doi: 10.1112/blms/bdm096. Google Scholar

[23]

J. Segata, Refined energy inequality with application to well-posedness for the fourth order nonlinear Schrödinger type equation on torus,, \emph{J. Differential Eq.}, 252 (2012), 5994. doi: 10.1016/j.jde.2012.02.016. Google Scholar

[24]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, \emph{SIAM J. Math. Anal.}, 16 (1985), 472. doi: 10.1137/0516034. Google Scholar

[25]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, \emph{Comm. Pure Appl. Math.}, 39 (1986), 51. doi: 10.1002/cpa.3160390103. Google Scholar

show all references

References:
[1]

P. J. Angulo, Nonlinear stability of periodic travelling wave solutions to the Schrödinger and the modified Korteweg-de Vries equations,, \emph{J. Differential Equations}, 235 (2007), 1. doi: 10.1016/j.jde.2007.01.003. Google Scholar

[2]

T. B. Benjamin, The stability of solitary waves,, \emph{Proc. Roy. Soc. (London) Ser. A}, 328 (1972), 153. Google Scholar

[3]

J. L. Bona, On the stability theory of solitary waves,, \emph{Proc. Roy. Soc. London Ser. A}, 344 (1975), 363. Google Scholar

[4]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation,, \emph{Philos. Trans. Roy. Soc. London Ser. A}, 278 (1975), 555. Google Scholar

[5]

T. J. Bridges and G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations,, \emph{SIAM J. Math. Anal.}, 33 (2002), 1356. doi: 10.1137/S0036141099361494. Google Scholar

[6]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists,, Springer-Verlag, (1971). Google Scholar

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, \emph{Comm. Math. Phys.}, 85 (1982), 549. Google Scholar

[8]

L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape,, \emph{Rend, 22 (1906), 117. Google Scholar

[9]

Y. Fukumoto, Motion of a curved vortex filament: higher-order asymptotics,, In \emph{Proc. of IUTAM Symposium on Geometry and Statistics of Turbulence} (eds. T. Kambe, (2001), 211. doi: 10.1007/978-94-015-9638-1_25. Google Scholar

[10]

Y. Fukumoto and H. K. Moffatt, Motion and expansion of a viscous vortex ring. Part I. A higher-order asymptotic formula for the velocity,, \emph{J. Fluid. Mech.}, 417 (2000), 1. doi: 10.1017/S0022112000008995. Google Scholar

[11]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, \emph{J. Funct. Anal.}, 74 (1987), 160. doi: 10.1016/0022-1236(87)90044-9. Google Scholar

[12]

H. Hasimoto, A soliton on a vortex filament,, \emph{J. Fluid Mech.}, 51 (1972), 477. Google Scholar

[13]

S. M. Hoseini and T. R. Marchant, Solitary wave interaction for a higher-order nonlinear Schrödinger equation,, \emph{IMA J. Appl. Math.}, 72 (2007), 206. doi: 10.1093/imamat/hxl034. Google Scholar

[14]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1493. doi: 10.1080/03605300701629385. Google Scholar

[15]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, \emph{Indiana Univ. math J.}, 40 (1991), 33. doi: 10.1512/iumj.1991.40.40003. Google Scholar

[16]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices,, \emph{Duke Math J.}, 71 (1993), 1. doi: 10.1215/S0012-7094-93-07101-3. Google Scholar

[17]

S. Kida, A vortex filament moving without change of form,, \emph{J. Fluid Mech.}, 112 (1981), 397. doi: 10.1017/S0022112081000475. Google Scholar

[18]

S. Kwon, On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map,, \emph{J. Differential Equations}, 245 (2008), 2627. doi: 10.1016/j.jde.2008.03.020. Google Scholar

[19]

J. Langer and R. Perline, Poisson geometry of the filament equation,, \emph{J. Nonlinear Sci.}, 1 (1991), 71. doi: 10.1007/BF01209148. Google Scholar

[20]

S. Levandosky, Stability of solitary waves of a fifth-order water wave model,, \emph{Phys. D}, 227 (2007), 162. doi: 10.1016/j.physd.2007.01.006. Google Scholar

[21]

M. Maeda and J. Segata, Existence and stability of standing waves of fourth order nonlinear Schrödinger type equation related to vortex filament,, \emph{Funkcial. Ekvac.}, 54 (2011), 1. doi: 10.1619/fesi.54.1. Google Scholar

[22]

A. Moyua and L. Vega, Bounds for the maximal function associated to periodic solutions of one-dimensional dispersive equations,, \emph{Bull. Lond. Math. Soc.}, 40 (2008), 117. doi: 10.1112/blms/bdm096. Google Scholar

[23]

J. Segata, Refined energy inequality with application to well-posedness for the fourth order nonlinear Schrödinger type equation on torus,, \emph{J. Differential Eq.}, 252 (2012), 5994. doi: 10.1016/j.jde.2012.02.016. Google Scholar

[24]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, \emph{SIAM J. Math. Anal.}, 16 (1985), 472. doi: 10.1137/0516034. Google Scholar

[25]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, \emph{Comm. Pure Appl. Math.}, 39 (1986), 51. doi: 10.1002/cpa.3160390103. Google Scholar

[1]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[2]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[3]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[4]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[5]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[6]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[7]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[8]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[9]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[10]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[11]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[12]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[13]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[14]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[15]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[16]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[17]

Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure & Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413

[18]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[19]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[20]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]