• Previous Article
    A note on the unique continuation property for fully nonlinear elliptic equations
  • CPAA Home
  • This Issue
  • Next Article
    Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain
March  2015, 14(2): 627-636. doi: 10.3934/cpaa.2015.14.627

Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators

1. 

Department of Mathematics, Hunan University, Changsha 410082, China

Received  January 2014 Revised  July 2014 Published  December 2014

In this paper, the boundedness from Lebesgue space to Orlicz space of certain Toeplitz type operator related to the pseudo-differential operator is obtained.
Citation: Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure & Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627
References:
[1]

S. Chanillo, A note on commutators,, \emph{Indiana Univ. Math. J.}, 31 (1982), 7. doi: 10.1512/iumj.1982.31.31002. Google Scholar

[2]

S. Chanillo and A. Torchinsky, Sharp function and weighted $L^p$ estimates for a class of pseudo-differential operators,, \emph{Ark. for Mat.}, 24 (1986), 1. doi: 10.1007/BF02384387. Google Scholar

[3]

R. Coifman and Y. Meyer, Au delá des opérateurs pseudo-différentiels,, \emph{Ast\'erisque}, 57 (1978). Google Scholar

[4]

R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables,, \emph{Ann. of Math.}, 103 (1976), 611. Google Scholar

[5]

C. Fefferman, $L^p$ bounds for pseudo-differential operators,, \emph{Israel J. Math.}, 14 (1973), 413. Google Scholar

[6]

J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics,, North-Holland Math., (1985). Google Scholar

[7]

S. Janson, Mean oscillation and commutators of singular integral operators,, \emph{Ark. for Mat.}, 16 (1978), 263. doi: 10.1007/BF02386000. Google Scholar

[8]

S. Janson and J. Peetre, Paracommutators boundedness and Schatten-von Neumann properties,, \emph{Tran. Amer. Math. Soc.}, 305 (1988), 467. doi: 10.2307/2000875. Google Scholar

[9]

S. Janson and J. Peetre, Higher order commutators of singular integral operators,, Interpolation spaces and allied topics in analysis, (1070), 125. doi: 10.1007/BFb0099097. Google Scholar

[10]

L. Z. Liu, Sharp and weighted boundedness for multilinear operators associated with pseudo-differential operators on Morrey space,, \emph{J. of Contemporary Math. Analysis}, 45 (2010), 136. doi: 10.3103/S1068362310030039. Google Scholar

[11]

L. Z. Liu, Sharp maximal function inequalities and boundedness for Toeplitz type operator associated to pseudo-differential operator,, \emph{J. of Pseudo-Differential Operators and Applications}, 3 (2012), 329. doi: 10.1007/s11868-012-0060-y. Google Scholar

[12]

N. Miller, Weighted Sobolev spaces and pseudo-differential operators with smooth symbols,, \emph{Trans. Amer. Math. Soc.}, 269 (1982), 91. doi: 10.2307/1998595. Google Scholar

[13]

M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss,, \emph{Indiana Univ. Math. J.}, 44 (1995), 1. doi: 10.1512/iumj.1995.44.1976. Google Scholar

[14]

C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators,, \emph{Michigan Math. J.}, 49 (2001), 23. doi: 10.1307/mmj/1008719033. Google Scholar

[15]

C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators,, \emph{J. London Math. Soc.}, 65 (2002), 672. doi: 10.1112/S0024610702003174. Google Scholar

[16]

M. Saidani, A. Lahmar-Benbernou and S. Gala, Pseudo-differential operators and commutators in multiplier spaces,, \emph{African Diaspora J. of Math.}, 6 (2008), 31. Google Scholar

[17]

E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,, Princeton Univ. Press, (1993). Google Scholar

[18]

M. E. Taylor, Pseudo-differential Operators and Nonlinear PDE,, Birkhauser, (1991). Google Scholar

show all references

References:
[1]

S. Chanillo, A note on commutators,, \emph{Indiana Univ. Math. J.}, 31 (1982), 7. doi: 10.1512/iumj.1982.31.31002. Google Scholar

[2]

S. Chanillo and A. Torchinsky, Sharp function and weighted $L^p$ estimates for a class of pseudo-differential operators,, \emph{Ark. for Mat.}, 24 (1986), 1. doi: 10.1007/BF02384387. Google Scholar

[3]

R. Coifman and Y. Meyer, Au delá des opérateurs pseudo-différentiels,, \emph{Ast\'erisque}, 57 (1978). Google Scholar

[4]

R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables,, \emph{Ann. of Math.}, 103 (1976), 611. Google Scholar

[5]

C. Fefferman, $L^p$ bounds for pseudo-differential operators,, \emph{Israel J. Math.}, 14 (1973), 413. Google Scholar

[6]

J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics,, North-Holland Math., (1985). Google Scholar

[7]

S. Janson, Mean oscillation and commutators of singular integral operators,, \emph{Ark. for Mat.}, 16 (1978), 263. doi: 10.1007/BF02386000. Google Scholar

[8]

S. Janson and J. Peetre, Paracommutators boundedness and Schatten-von Neumann properties,, \emph{Tran. Amer. Math. Soc.}, 305 (1988), 467. doi: 10.2307/2000875. Google Scholar

[9]

S. Janson and J. Peetre, Higher order commutators of singular integral operators,, Interpolation spaces and allied topics in analysis, (1070), 125. doi: 10.1007/BFb0099097. Google Scholar

[10]

L. Z. Liu, Sharp and weighted boundedness for multilinear operators associated with pseudo-differential operators on Morrey space,, \emph{J. of Contemporary Math. Analysis}, 45 (2010), 136. doi: 10.3103/S1068362310030039. Google Scholar

[11]

L. Z. Liu, Sharp maximal function inequalities and boundedness for Toeplitz type operator associated to pseudo-differential operator,, \emph{J. of Pseudo-Differential Operators and Applications}, 3 (2012), 329. doi: 10.1007/s11868-012-0060-y. Google Scholar

[12]

N. Miller, Weighted Sobolev spaces and pseudo-differential operators with smooth symbols,, \emph{Trans. Amer. Math. Soc.}, 269 (1982), 91. doi: 10.2307/1998595. Google Scholar

[13]

M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss,, \emph{Indiana Univ. Math. J.}, 44 (1995), 1. doi: 10.1512/iumj.1995.44.1976. Google Scholar

[14]

C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators,, \emph{Michigan Math. J.}, 49 (2001), 23. doi: 10.1307/mmj/1008719033. Google Scholar

[15]

C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators,, \emph{J. London Math. Soc.}, 65 (2002), 672. doi: 10.1112/S0024610702003174. Google Scholar

[16]

M. Saidani, A. Lahmar-Benbernou and S. Gala, Pseudo-differential operators and commutators in multiplier spaces,, \emph{African Diaspora J. of Math.}, 6 (2008), 31. Google Scholar

[17]

E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,, Princeton Univ. Press, (1993). Google Scholar

[18]

M. E. Taylor, Pseudo-differential Operators and Nonlinear PDE,, Birkhauser, (1991). Google Scholar

[1]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[2]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[3]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

[4]

Nigel Higson and Gennadi Kasparov. Operator K-theory for groups which act properly and isometrically on Hilbert space. Electronic Research Announcements, 1997, 3: 131-142.

[5]

Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271

[6]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[7]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[8]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[9]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[10]

Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial & Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084

[11]

Nakao Hayashi, Pavel I. Naumkin. Modified wave operator for Schrodinger type equations with subcritical dissipative nonlinearities. Inverse Problems & Imaging, 2007, 1 (2) : 391-398. doi: 10.3934/ipi.2007.1.391

[12]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[13]

Hua Liu, Zhaosheng Feng. Begehr-Hile operator and its applications to some differential equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 387-395. doi: 10.3934/cpaa.2010.9.387

[14]

Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096

[15]

Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233

[16]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[17]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[18]

Ismail Kombe, Abdullah Yener. A general approach to weighted $L^{p}$ Rellich type inequalities related to Greiner operator. Communications on Pure & Applied Analysis, 2019, 18 (2) : 869-886. doi: 10.3934/cpaa.2019042

[19]

Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1881-1896. doi: 10.3934/jimo.2018127

[20]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]