March  2015, 14(2): 493-515. doi: 10.3934/cpaa.2015.14.493

Sharp existence criteria for positive solutions of Hardy--Sobolev type systems

1. 

Department of Mathematics, University of Oklahoma, Norman, OK 73019-3103, China

Received  February 2014 Revised  September 2014 Published  December 2014

This paper examines systems of poly-harmonic equations of the Hardy--Sobolev type and the closely related weighted systems of integral equations involving Riesz potentials. Namely, it is shown that the two systems are equivalent under some appropriate conditions. Then a sharp criterion for the existence and non-existence of positive solutions is determined for both differential and integral versions of a Hardy--Sobolev type system with variable coefficients. In the constant coefficient case, Liouville type theorems for positive radial solutions are also established using radial decay estimates and Pohozaev type identities in integral form.
Citation: John Villavert. Sharp existence criteria for positive solutions of Hardy--Sobolev type systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 493-515. doi: 10.3934/cpaa.2015.14.493
References:
[1]

J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden systems,, \emph{Indiana Univ. Math. J.}, 51 (2002), 37. Google Scholar

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, \emph{Comm. Pure Appl. Math.}, 42 (1989), 271. doi: 10.1002/cpa.3160420304. Google Scholar

[3]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, \emph{Compos. Math.}, 53 (1984), 259. Google Scholar

[4]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems,, \emph{Milan J. Math.}, 76 (2008), 27. doi: 10.1007/s00032-008-0090-3. Google Scholar

[5]

G. Caristi, E. Mitidieri and R. Soranzo, Isolated singularities of polyharmonic equations,, \emph{Atti Sem. Mat. Fis. Univ. Modena}, 46 (1998), 257. Google Scholar

[6]

F. Catrina and Z. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar

[7]

W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space,, \emph{J. Funct. Anal.}, 265 (2013), 1522. doi: 10.1016/j.jfa.2013.06.010. Google Scholar

[8]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, \emph{Duke Math. J.}, 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar

[9]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 2497. doi: 10.3934/cpaa.2013.12.2497. Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, \emph{Comm. in Partial Differential Equations}, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar

[11]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, \emph{Discrete Contin. Dyn. Syst.}, 12 (2005), 347. Google Scholar

[12]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[13]

L. D'Ambrosio and E. Mitidieri, Hardy-Littlewood-Sobolev systems and related Liouville theorems,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 7 (2014), 653. doi: 10.3934/dcdss.2014.7.653. Google Scholar

[14]

D. G. De Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems,, \emph{Ann. Sc. Norm. Sup. Pisa}, 21 (1994), 387. Google Scholar

[15]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, \emph{Adv. Math. Suppl. Studies A}, 7 (1981), 369. Google Scholar

[16]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, \emph{Comm. Partial Differential Equations}, 6 (1981), 883. doi: 10.1080/03605308108820196. Google Scholar

[17]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, \emph{Comm. Pure and Appl. Math.}, 34 (1981), 525. doi: 10.1002/cpa.3160340406. Google Scholar

[18]

G. H. Hardy, J. E. Littlewood and G. Pólya, Some properties of fractional integral (1),, \emph{Math. Z.}, 27 (1928), 565. doi: 10.1007/BF01171116. Google Scholar

[19]

M. Hénon, Numerical experiments on the stability of spherical stellar systems,, \emph{Astronom. Astrophys.}, 24 (1973), 229. Google Scholar

[20]

Y. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations,, \emph{J. Differential Equations}, 253 (2013), 1774. doi: 10.1016/j.jde.2012.11.008. Google Scholar

[21]

Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems,, preprint, (). Google Scholar

[22]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, \emph{Ivent. Math.}, 123 (1996), 221. doi: 10.1007/s002220050023. Google Scholar

[23]

C. Li, A degree theory approach for the shooting method,, preprint, (). Google Scholar

[24]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, \emph{Ann. of Math.}, 118 (1983), 349. doi: 10.2307/2007032. Google Scholar

[25]

J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems,, \emph{J. Partial Differential Equations}, 19 (2006), 256. Google Scholar

[26]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $R^N$,, \emph{J. Differential Equations}, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016. Google Scholar

[27]

E. Mitidieri, A Rellich type identity and applications,, \emph{Comm. Partial Differential Equations}, 18 (1993), 125. doi: 10.1080/03605309308820923. Google Scholar

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$,, \emph{Differ. Integral Equations}, 9 (1996), 465. Google Scholar

[29]

Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy-Hénon systems,, \emph{Adv. Differential Equations}, 17 (2012), 605. Google Scholar

[30]

Q. H. Phan and P. Souplet, Liouville-type theorems and bounds of solutions of Hardy-Hénon equations,, \emph{J. Differential Equations}, 252 (2012), 2544. doi: 10.1016/j.jde.2011.09.022. Google Scholar

[31]

P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems,, \emph{Duke Math. J.}, 139 (2007), 555. doi: 10.1215/S0012-7094-07-13935-8. Google Scholar

[32]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems,, \emph{Differ. Integral Equations}, 9 (1996), 635. Google Scholar

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, \emph{Adv. Math.}, 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar

[34]

E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space,, \emph{J. Math. Mech.}, 7 (1958), 503. Google Scholar

[35]

J. Villavert, Shooting with degree theory: Analysis of some weighted poly-harmonic systems,, \emph{J. Differential Equations}, 257 (2014), 1148. doi: 10.1016/j.jde.2014.05.003. Google Scholar

[36]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, \emph{Math. Ann.}, 313 (1999), 207. doi: 10.1007/s002080050258. Google Scholar

show all references

References:
[1]

J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden systems,, \emph{Indiana Univ. Math. J.}, 51 (2002), 37. Google Scholar

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, \emph{Comm. Pure Appl. Math.}, 42 (1989), 271. doi: 10.1002/cpa.3160420304. Google Scholar

[3]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, \emph{Compos. Math.}, 53 (1984), 259. Google Scholar

[4]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems,, \emph{Milan J. Math.}, 76 (2008), 27. doi: 10.1007/s00032-008-0090-3. Google Scholar

[5]

G. Caristi, E. Mitidieri and R. Soranzo, Isolated singularities of polyharmonic equations,, \emph{Atti Sem. Mat. Fis. Univ. Modena}, 46 (1998), 257. Google Scholar

[6]

F. Catrina and Z. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar

[7]

W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space,, \emph{J. Funct. Anal.}, 265 (2013), 1522. doi: 10.1016/j.jfa.2013.06.010. Google Scholar

[8]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, \emph{Duke Math. J.}, 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar

[9]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, \emph{Commun. Pure Appl. Anal.}, 12 (2013), 2497. doi: 10.3934/cpaa.2013.12.2497. Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, \emph{Comm. in Partial Differential Equations}, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar

[11]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, \emph{Discrete Contin. Dyn. Syst.}, 12 (2005), 347. Google Scholar

[12]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[13]

L. D'Ambrosio and E. Mitidieri, Hardy-Littlewood-Sobolev systems and related Liouville theorems,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 7 (2014), 653. doi: 10.3934/dcdss.2014.7.653. Google Scholar

[14]

D. G. De Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems,, \emph{Ann. Sc. Norm. Sup. Pisa}, 21 (1994), 387. Google Scholar

[15]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, \emph{Adv. Math. Suppl. Studies A}, 7 (1981), 369. Google Scholar

[16]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, \emph{Comm. Partial Differential Equations}, 6 (1981), 883. doi: 10.1080/03605308108820196. Google Scholar

[17]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, \emph{Comm. Pure and Appl. Math.}, 34 (1981), 525. doi: 10.1002/cpa.3160340406. Google Scholar

[18]

G. H. Hardy, J. E. Littlewood and G. Pólya, Some properties of fractional integral (1),, \emph{Math. Z.}, 27 (1928), 565. doi: 10.1007/BF01171116. Google Scholar

[19]

M. Hénon, Numerical experiments on the stability of spherical stellar systems,, \emph{Astronom. Astrophys.}, 24 (1973), 229. Google Scholar

[20]

Y. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations,, \emph{J. Differential Equations}, 253 (2013), 1774. doi: 10.1016/j.jde.2012.11.008. Google Scholar

[21]

Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems,, preprint, (). Google Scholar

[22]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, \emph{Ivent. Math.}, 123 (1996), 221. doi: 10.1007/s002220050023. Google Scholar

[23]

C. Li, A degree theory approach for the shooting method,, preprint, (). Google Scholar

[24]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, \emph{Ann. of Math.}, 118 (1983), 349. doi: 10.2307/2007032. Google Scholar

[25]

J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems,, \emph{J. Partial Differential Equations}, 19 (2006), 256. Google Scholar

[26]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $R^N$,, \emph{J. Differential Equations}, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016. Google Scholar

[27]

E. Mitidieri, A Rellich type identity and applications,, \emph{Comm. Partial Differential Equations}, 18 (1993), 125. doi: 10.1080/03605309308820923. Google Scholar

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$,, \emph{Differ. Integral Equations}, 9 (1996), 465. Google Scholar

[29]

Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy-Hénon systems,, \emph{Adv. Differential Equations}, 17 (2012), 605. Google Scholar

[30]

Q. H. Phan and P. Souplet, Liouville-type theorems and bounds of solutions of Hardy-Hénon equations,, \emph{J. Differential Equations}, 252 (2012), 2544. doi: 10.1016/j.jde.2011.09.022. Google Scholar

[31]

P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems,, \emph{Duke Math. J.}, 139 (2007), 555. doi: 10.1215/S0012-7094-07-13935-8. Google Scholar

[32]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems,, \emph{Differ. Integral Equations}, 9 (1996), 635. Google Scholar

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, \emph{Adv. Math.}, 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar

[34]

E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space,, \emph{J. Math. Mech.}, 7 (1958), 503. Google Scholar

[35]

J. Villavert, Shooting with degree theory: Analysis of some weighted poly-harmonic systems,, \emph{J. Differential Equations}, 257 (2014), 1148. doi: 10.1016/j.jde.2014.05.003. Google Scholar

[36]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, \emph{Math. Ann.}, 313 (1999), 207. doi: 10.1007/s002080050258. Google Scholar

[1]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[2]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[3]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[4]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[5]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[6]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[7]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[8]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[9]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[10]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[11]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[12]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[13]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[14]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[15]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[16]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[17]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[18]

Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373

[19]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[20]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]