March  2015, 14(2): 457-491. doi: 10.3934/cpaa.2015.14.457

Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay

1. 

Department of Mathematics and Statistics, College of Sciences, King Fahd University of Petroleum and Minerals, P.O. Box 5005, Dhahran 31261

2. 

Department of Mathematics and Statistics, College of Sciences, King Fahd University of Petroleum and Minerals, P.O.Box. 5005, Dhahran 31261, Saudi Arabia

Received  August 2014 Revised  October 2014 Published  December 2014

In this paper, we consider a class of second order abstract linear hyperbolic equations with infinite memory and distributed time delay. Under appropriate assumptions on the infinite memory and distributed time delay convolution kernels, we prove well-posedness and stability of the system. Our estimation shows that the dissipation resulting from the infinite memory alone guarantees the asymptotic stability of the system in spite of the presence of distributed time delay. The decay rate of solutions is found explicitly in terms of the growth at infinity of the infinite memory and the distributed time delay convolution kernels. An application of our approach to the discrete time delay case is also given.
Citation: Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457
References:
[1]

M. Aassila, M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term,, \emph{Calc. Var. Partial Differential Equations}, 15 (2002), 155. doi: 10.1007/s005260100096. Google Scholar

[2]

M. Aassila, M. M. Cavalcanti and J. A. Soriano, Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain,, \emph{SIAM J. Control Optim.}, 38 (2000), 1581. doi: 10.1137/S0363012998344981. Google Scholar

[3]

K. Ammari, S. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay,, \emph{Systems Cont. Letters}, 59 (2010), 623. doi: 10.1016/j.sysconle.2010.07.007. Google Scholar

[4]

T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type III with viscoelastic damping and delay term,, \emph{Elect. J. Diff. Equa.}, 2012 (2012), 1. Google Scholar

[5]

A. Benaissa, A. K. Benaissa and S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks,, \emph{J. Math. Phys.}, 53 (2012), 1. Google Scholar

[6]

S. Berrimi and S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source,, \emph{Nonlinear Analysis T. M. A.}, 64 (2006), 2314. doi: 10.1016/j.na.2005.08.015. Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, \emph{Nonlinear Analysis T. M. A.}, 68 (2008), 177. doi: 10.1016/j.na.2006.10.040. Google Scholar

[8]

M. M. Cavalcanti, V. N. Domingos and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping,, \emph{Elect. J. Diff. Equa.}, 44 (2002), 1. Google Scholar

[9]

M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation,, \emph{SIAM J. Control Optim.}, 42 (2003), 1310. doi: 10.1137/S0363012902408010. Google Scholar

[10]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, \emph{Asymptotic Anal.}, 46 (2006), 251. Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, \emph{Arch. Rational Mech. Anal.}, 37 (1970), 297. Google Scholar

[12]

R. Datko, Two questions concerning the boundary control of certain elastic systems,, \emph{J. Diff. Equa.}, 1 (1991), 27. doi: 10.1016/0022-0396(91)90062-E. Google Scholar

[13]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, \emph{SIAM J. Control Optim.}, 1 (1986), 152. doi: 10.1137/0324007. Google Scholar

[14]

M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linear viscoelastic solids,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 139. doi: 10.1007/BF00375589. Google Scholar

[15]

E. Fridman, S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay,, \emph{SIAM J. Control Optim.}, 8 (2010), 5028. doi: 10.1137/090762105. Google Scholar

[16]

C. Giorgi, J. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity,, \emph{J. Math. Anal. Appl.}, 260 (2001), 83. doi: 10.1006/jmaa.2001.7437. Google Scholar

[17]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory,, \emph{J. Math. Anal. Appl.}, 382 (2011), 748. doi: 10.1016/j.jmaa.2011.04.079. Google Scholar

[18]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay,, \emph{IMA J. Mathematical Control and Information}, 30 (2013), 507. doi: 10.1093/imamci/dns039. Google Scholar

[19]

A. Guesmia, Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay,, \emph{J. Math. Phys.}, (). Google Scholar

[20]

A. Guesmia and S. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping,, \emph{Math. Meth. Appl. Sci.}, 32 (2009), 2102. doi: 10.1002/mma.1125. Google Scholar

[21]

A. Guesmia and S. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories,, \emph{Nonlinear Analysis T. M. A.}, 13 (2012), 476. doi: 10.1016/j.nonrwa.2011.08.004. Google Scholar

[22]

A. Guesmia, S. Messaoudi and B. Said-Houari, General decay of solutions of a nonlinear system of viscoelastic wave equations,, \emph{Nonl. Diff. Equa. Appl.}, 18 (2011), 659. doi: 10.1007/s00030-011-0112-7. Google Scholar

[23]

A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems,, \emph{Elect. J. Diff. Equa.}, 2012 (2012), 1. Google Scholar

[24]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay,, \emph{Z. Angew. Math. Phys.}, 62 (2011), 1065. doi: 10.1007/s00033-011-0145-0. Google Scholar

[25]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994). Google Scholar

[26]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity,, \emph{Quart. Appl. Math.}, 54 (1996), 21. Google Scholar

[27]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, \emph{J. Math. Anal. Appl.}, 341 (2008), 1457. doi: 10.1016/j.jmaa.2007.11.048. Google Scholar

[28]

S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source,, \emph{Nonlinear Analysis T. M. A.}, 69 (2008), 2589. doi: 10.1016/j.na.2007.08.035. Google Scholar

[29]

S. A. Messaoudi and N. E. Tatar, Global existence and asymptotic behavior for a nonlinear viscoelastic problem,, \emph{Math. Meth. Sci. Res. J.}, 4 (2003), 136. Google Scholar

[30]

S. A. Messaoudi and N. E. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem,, \emph{Math. Meth. Appl. Sci.}, 30 (2007), 665. doi: 10.1002/mma.804. Google Scholar

[31]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory,, \emph{J. Math. Anal. Appl.}, 326 (2007), 691. doi: 10.1016/j.jmaa.2006.03.022. Google Scholar

[32]

M. I. Mustafa, Exponential decay in thermoelastic systems with boundary delay,, \emph{J. Abst. Diff. Equa. Appl.}, 2 (2011), 1. Google Scholar

[33]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks,, \emph{SIAM J. Control Optim.}, 5 (2006), 1561. doi: 10.1137/060648891. Google Scholar

[34]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay,, \emph{Diff. Integral Equa.}, 9-10 (2008), 9. Google Scholar

[35]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay,, \emph{Elect. J. Diff. Equa.}, 41 (2011), 1. Google Scholar

[36]

S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay,, \emph{Disc. Cont. Dyna. Syst. Series S}, 3 (2011), 693. doi: 10.3934/dcdss.2011.4.693. Google Scholar

[37]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay,, \emph{ESAIM Control Optim.}, 2 (2010), 420. doi: 10.1051/cocv/2009007. Google Scholar

[38]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, \emph{Disc. Cont. Dyna. Syst. Series S}, 2 (2009), 559. doi: 10.3934/dcdss.2009.2.559. Google Scholar

[39]

V. Pata, Exponential stability in linear viscoelasticity,, \emph{Quart. Appl. Math.}, 3 (2006), 499. doi: 10.1007/s00032-009-0098-3. Google Scholar

[40]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels,, \emph{Commun. Pure. Appl. Anal.}, 9 (2010), 721. doi: 10.3934/cpaa.2010.9.721. Google Scholar

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[42]

B. Said-Houari, A stability result for a Timoshenko system with past history and a delay term in the internal feedback,, \emph{Dynamic Systems and Applications}, 20 (2011), 327. Google Scholar

[43]

B. Said-Houari and F. Falcão Nascimento, Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 375. doi: 10.3934/cpaa.2013.12.375. Google Scholar

[44]

N. E. Tatar, Exponential decay for a viscoelastic problem with a singular kernel,, \emph{Z. angew. Math. Phys.}, 60 (2009), 640. doi: 10.1007/s00033-008-8030-1. Google Scholar

[45]

N. E. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity,, \emph{Appl. Math. Comp.}, 215 (2009), 2298. doi: 10.1016/j.amc.2009.08.034. Google Scholar

[46]

N. E. Tatar, How far can relaxation functions be increasing in viscoelastic problems?, \emph{Appl. Math. Letters}, 22 (2009), 336. doi: 10.1016/j.aml.2008.04.005. Google Scholar

[47]

N. E. Tatar, A new class of kernels leading to an arbitrary decay in viscoelasticity,, \emph{Mediterr. J. Math.}, 6 (2010), 139. doi: 10.1007/s00009-012-0177-5. Google Scholar

[48]

N. E. Tatar, On a perturbed kernel in viscoelasticity,, \emph{Appl. Math. Letters}, 24 (2011), 766. doi: 10.1016/j.aml.2010.12.035. Google Scholar

[49]

N. E. Tatar, Arbitrary decays in linear viscoelasticity,, \emph{J. Math. Phys.}, 52 (2011), 1. doi: 10.1063/1.3533766. Google Scholar

[50]

N. E. Tatar, Uniform decay in viscoelasticity for kernels with small non-decreasingness zones,, \emph{Appl. Math. Comp.}, 218 (2012), 7939. doi: 10.1016/j.amc.2012.02.012. Google Scholar

[51]

N. E. Tatar, Oscillating kernels and arbitrary decays in viscoelasticity,, \emph{Math. Nachr.}, 285 (2012), 1130. doi: 10.1002/mana.201000053. Google Scholar

[52]

A. Vicente, Wave equation with acoustic/memory boundary conditions,, \emph{Bol. Soc. Parana. Mat.}, 27 (2009), 29. doi: 10.5269/bspm.v27i1.9066. Google Scholar

show all references

References:
[1]

M. Aassila, M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term,, \emph{Calc. Var. Partial Differential Equations}, 15 (2002), 155. doi: 10.1007/s005260100096. Google Scholar

[2]

M. Aassila, M. M. Cavalcanti and J. A. Soriano, Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain,, \emph{SIAM J. Control Optim.}, 38 (2000), 1581. doi: 10.1137/S0363012998344981. Google Scholar

[3]

K. Ammari, S. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay,, \emph{Systems Cont. Letters}, 59 (2010), 623. doi: 10.1016/j.sysconle.2010.07.007. Google Scholar

[4]

T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type III with viscoelastic damping and delay term,, \emph{Elect. J. Diff. Equa.}, 2012 (2012), 1. Google Scholar

[5]

A. Benaissa, A. K. Benaissa and S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks,, \emph{J. Math. Phys.}, 53 (2012), 1. Google Scholar

[6]

S. Berrimi and S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source,, \emph{Nonlinear Analysis T. M. A.}, 64 (2006), 2314. doi: 10.1016/j.na.2005.08.015. Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, \emph{Nonlinear Analysis T. M. A.}, 68 (2008), 177. doi: 10.1016/j.na.2006.10.040. Google Scholar

[8]

M. M. Cavalcanti, V. N. Domingos and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping,, \emph{Elect. J. Diff. Equa.}, 44 (2002), 1. Google Scholar

[9]

M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation,, \emph{SIAM J. Control Optim.}, 42 (2003), 1310. doi: 10.1137/S0363012902408010. Google Scholar

[10]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, \emph{Asymptotic Anal.}, 46 (2006), 251. Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, \emph{Arch. Rational Mech. Anal.}, 37 (1970), 297. Google Scholar

[12]

R. Datko, Two questions concerning the boundary control of certain elastic systems,, \emph{J. Diff. Equa.}, 1 (1991), 27. doi: 10.1016/0022-0396(91)90062-E. Google Scholar

[13]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, \emph{SIAM J. Control Optim.}, 1 (1986), 152. doi: 10.1137/0324007. Google Scholar

[14]

M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linear viscoelastic solids,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 139. doi: 10.1007/BF00375589. Google Scholar

[15]

E. Fridman, S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay,, \emph{SIAM J. Control Optim.}, 8 (2010), 5028. doi: 10.1137/090762105. Google Scholar

[16]

C. Giorgi, J. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity,, \emph{J. Math. Anal. Appl.}, 260 (2001), 83. doi: 10.1006/jmaa.2001.7437. Google Scholar

[17]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory,, \emph{J. Math. Anal. Appl.}, 382 (2011), 748. doi: 10.1016/j.jmaa.2011.04.079. Google Scholar

[18]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay,, \emph{IMA J. Mathematical Control and Information}, 30 (2013), 507. doi: 10.1093/imamci/dns039. Google Scholar

[19]

A. Guesmia, Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay,, \emph{J. Math. Phys.}, (). Google Scholar

[20]

A. Guesmia and S. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping,, \emph{Math. Meth. Appl. Sci.}, 32 (2009), 2102. doi: 10.1002/mma.1125. Google Scholar

[21]

A. Guesmia and S. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories,, \emph{Nonlinear Analysis T. M. A.}, 13 (2012), 476. doi: 10.1016/j.nonrwa.2011.08.004. Google Scholar

[22]

A. Guesmia, S. Messaoudi and B. Said-Houari, General decay of solutions of a nonlinear system of viscoelastic wave equations,, \emph{Nonl. Diff. Equa. Appl.}, 18 (2011), 659. doi: 10.1007/s00030-011-0112-7. Google Scholar

[23]

A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems,, \emph{Elect. J. Diff. Equa.}, 2012 (2012), 1. Google Scholar

[24]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay,, \emph{Z. Angew. Math. Phys.}, 62 (2011), 1065. doi: 10.1007/s00033-011-0145-0. Google Scholar

[25]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994). Google Scholar

[26]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity,, \emph{Quart. Appl. Math.}, 54 (1996), 21. Google Scholar

[27]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, \emph{J. Math. Anal. Appl.}, 341 (2008), 1457. doi: 10.1016/j.jmaa.2007.11.048. Google Scholar

[28]

S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source,, \emph{Nonlinear Analysis T. M. A.}, 69 (2008), 2589. doi: 10.1016/j.na.2007.08.035. Google Scholar

[29]

S. A. Messaoudi and N. E. Tatar, Global existence and asymptotic behavior for a nonlinear viscoelastic problem,, \emph{Math. Meth. Sci. Res. J.}, 4 (2003), 136. Google Scholar

[30]

S. A. Messaoudi and N. E. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem,, \emph{Math. Meth. Appl. Sci.}, 30 (2007), 665. doi: 10.1002/mma.804. Google Scholar

[31]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory,, \emph{J. Math. Anal. Appl.}, 326 (2007), 691. doi: 10.1016/j.jmaa.2006.03.022. Google Scholar

[32]

M. I. Mustafa, Exponential decay in thermoelastic systems with boundary delay,, \emph{J. Abst. Diff. Equa. Appl.}, 2 (2011), 1. Google Scholar

[33]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks,, \emph{SIAM J. Control Optim.}, 5 (2006), 1561. doi: 10.1137/060648891. Google Scholar

[34]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay,, \emph{Diff. Integral Equa.}, 9-10 (2008), 9. Google Scholar

[35]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay,, \emph{Elect. J. Diff. Equa.}, 41 (2011), 1. Google Scholar

[36]

S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay,, \emph{Disc. Cont. Dyna. Syst. Series S}, 3 (2011), 693. doi: 10.3934/dcdss.2011.4.693. Google Scholar

[37]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay,, \emph{ESAIM Control Optim.}, 2 (2010), 420. doi: 10.1051/cocv/2009007. Google Scholar

[38]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, \emph{Disc. Cont. Dyna. Syst. Series S}, 2 (2009), 559. doi: 10.3934/dcdss.2009.2.559. Google Scholar

[39]

V. Pata, Exponential stability in linear viscoelasticity,, \emph{Quart. Appl. Math.}, 3 (2006), 499. doi: 10.1007/s00032-009-0098-3. Google Scholar

[40]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels,, \emph{Commun. Pure. Appl. Anal.}, 9 (2010), 721. doi: 10.3934/cpaa.2010.9.721. Google Scholar

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[42]

B. Said-Houari, A stability result for a Timoshenko system with past history and a delay term in the internal feedback,, \emph{Dynamic Systems and Applications}, 20 (2011), 327. Google Scholar

[43]

B. Said-Houari and F. Falcão Nascimento, Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 375. doi: 10.3934/cpaa.2013.12.375. Google Scholar

[44]

N. E. Tatar, Exponential decay for a viscoelastic problem with a singular kernel,, \emph{Z. angew. Math. Phys.}, 60 (2009), 640. doi: 10.1007/s00033-008-8030-1. Google Scholar

[45]

N. E. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity,, \emph{Appl. Math. Comp.}, 215 (2009), 2298. doi: 10.1016/j.amc.2009.08.034. Google Scholar

[46]

N. E. Tatar, How far can relaxation functions be increasing in viscoelastic problems?, \emph{Appl. Math. Letters}, 22 (2009), 336. doi: 10.1016/j.aml.2008.04.005. Google Scholar

[47]

N. E. Tatar, A new class of kernels leading to an arbitrary decay in viscoelasticity,, \emph{Mediterr. J. Math.}, 6 (2010), 139. doi: 10.1007/s00009-012-0177-5. Google Scholar

[48]

N. E. Tatar, On a perturbed kernel in viscoelasticity,, \emph{Appl. Math. Letters}, 24 (2011), 766. doi: 10.1016/j.aml.2010.12.035. Google Scholar

[49]

N. E. Tatar, Arbitrary decays in linear viscoelasticity,, \emph{J. Math. Phys.}, 52 (2011), 1. doi: 10.1063/1.3533766. Google Scholar

[50]

N. E. Tatar, Uniform decay in viscoelasticity for kernels with small non-decreasingness zones,, \emph{Appl. Math. Comp.}, 218 (2012), 7939. doi: 10.1016/j.amc.2012.02.012. Google Scholar

[51]

N. E. Tatar, Oscillating kernels and arbitrary decays in viscoelasticity,, \emph{Math. Nachr.}, 285 (2012), 1130. doi: 10.1002/mana.201000053. Google Scholar

[52]

A. Vicente, Wave equation with acoustic/memory boundary conditions,, \emph{Bol. Soc. Parana. Mat.}, 27 (2009), 29. doi: 10.5269/bspm.v27i1.9066. Google Scholar

[1]

Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations & Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035

[2]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[3]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[4]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[5]

Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515

[6]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[7]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[8]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[9]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[10]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[11]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[12]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[13]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[14]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[15]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[16]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[17]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[18]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[19]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[20]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]