• Previous Article
    On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point
  • CPAA Home
  • This Issue
  • Next Article
    Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay
March  2015, 14(2): 439-455. doi: 10.3934/cpaa.2015.14.439

Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents

1. 

Department of Mathematics and Computer Science, Guizhou Normal University, Guiyang, 550001, China

2. 

Department of Mathematics, Huazhong Normal University,Wuhan, 430079, China

Received  December 2013 Revised  September 2014 Published  December 2014

We study the following elliptic equation with two Sobolev-Hardy critical exponents \begin{eqnarray} & -\Delta u=\mu\frac{|u|^{2^{*}(s_1)-2}u}{|x|^{s_1}}+\frac{|u|^{2^{*}(s_2)-2}u}{|x|^{s_2}} \quad x\in \Omega, \\ & u=0, \quad x\in \partial\Omega, \end{eqnarray} where $\Omega\subset R^N (N\geq3)$ is a bounded smooth domain, $0\in\partial\Omega$, $0\leq s_2 < s_1 \leq 2$ and $2^*(s):=\frac{2(N-s)}{N-2}$. In this paper, by means of variational methods, we obtain the existence of sign-changing solutions if $H(0)<0$, where $H(0)$ denote the mean curvature of $\partial\Omega$ at $0$.
Citation: Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439
References:
[1]

T. Bartsch, S. Peng and Z. Zhang, Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities,, \emph{Calc. Var. Partial Differential Equations}, 30 (2007), 113. doi: 10.1007/s00526-006-0086-1. Google Scholar

[2]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics,, \emph{Arch. Ration. Mech. Anal.}, 163 (2002), 259. doi: 10.1007/s002050200201. Google Scholar

[3]

J. Batt, W. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics,, \emph{Arch. Rational Mech. Anal.}, 93 (1986), 159. doi: 10.1007/BF00279958. Google Scholar

[4]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437. doi: 10.1002/cpa.3160360405. Google Scholar

[5]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, \emph{Compositio Math.}, 53 (1984), 259. Google Scholar

[6]

D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential,, \emph{J. Differential Equations}, 205 (2004), 521. doi: 10.1016/j.jde.2004.03.005. Google Scholar

[7]

D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, \emph{J. Differential Equations}, 224 (2006), 332. doi: 10.1016/j.jde.2005.07.010. Google Scholar

[8]

D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms,, \emph{J. Differential Equations}, 193 (2003), 424. doi: 10.1016/S0022-0396(03)00118-9. Google Scholar

[9]

D. Cao and S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 471. doi: 10.1007/s00526-009-0295-5. Google Scholar

[10]

F. Catrina and Z. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar

[11]

Z. Cheng and W. Zou, On an elliptic problem with critical exponent and Hardy potential,, \emph{J. Differential Equations}, 252 (2012), 969. doi: 10.1016/j.jde.2011.09.042. Google Scholar

[12]

J. Chern and C. Lin, Minimizer of Caffarelli-Kohn-Nirenberg inequlities with the singularity on the boundary,, \emph{Arch. Ration. Mech. Anal.}, 197 (2010), 401. doi: 10.1007/s00205-009-0269-y. Google Scholar

[13]

K. Chou and C. Chu, On the best constant for a weighted Sobolev-Hardy inequality,, \emph{J. London Math. Soc.}, 48 (1993), 137. doi: 10.1112/jlms/s2-48.1.137. Google Scholar

[14]

H. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities,, \emph{Indiana Univ. Math. J.}, 38 (1989), 235. Google Scholar

[15]

I. Ekeland and N. Ghoussoub, Selected new aspects of the calculus of variations in the large,, \emph{Bull. Amer. Math. Soc.}, 39 (2002), 207. doi: 10.1090/S0273-0979-02-00929-1. Google Scholar

[16]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, \emph{J. Differential Equations}, 177 (2001), 494. doi: 10.1006/jdeq.2000.3999. Google Scholar

[17]

D. Fortunato and E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains,, \emph{Proc. Roy. Soc. Edinburgh Sect.}, 105 (1987), 205. doi: 10.1017/S0308210500022046. Google Scholar

[18]

N. Ghoussoub and X. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 21 (2004), 767. doi: 10.1016/j.anihpc.2003.07.002. Google Scholar

[19]

N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities,, \emph{Geom. Funct. Anal.}, 16 (2006), 1201. doi: 10.1007/s00039-006-0579-2. Google Scholar

[20]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents,, \emph{Trans. Amer. Math. Soc.}, 352 (2000), 5703. doi: 10.1090/S0002-9947-00-02560-5. Google Scholar

[21]

C. H. Hsia, C. Lin and H. Wadade, Revisiting an idea of Brézis and Nirenberg,, \emph{J. Funct. Anal.}, 259 (2010), 1816. doi: 10.1016/j.jfa.2010.05.004. Google Scholar

[22]

D. Kang and S. Peng, Sign-changing solutions for elliptic problems with critical Sobolev-Hardy exponents,, \emph{J. Math. Anal. Appl.}, 291 (2004), 488. doi: 10.1016/j.jmaa.2003.11.012. Google Scholar

[23]

Y. Li, On the positive solutions of the Matukuma equation,, \emph{Duke Math. J.}, 70 (1993), 575. doi: 10.1215/S0012-7094-93-07012-3. Google Scholar

[24]

Y. Li and C. Lin, A nonlinear elliptic PDE and two Sobolev-Hardy critical exponents,, \emph{Arch. Ration. Mech. Anal.}, 203 (2012), 943. Google Scholar

[25]

Y. Li and W. Ni, On conformal scalar curvature equations in $\R^N$,, \emph{Duke Math. J.}, 57 (1988), 895. doi: 10.1215/S0012-7094-88-05740-7. Google Scholar

[26]

Y. Li and W. Ni, On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalization,, \emph{Arch. Rational Mech. Anal.}, 108 (1989), 175. doi: 10.1007/BF01053462. Google Scholar

[27]

C. Lin, Interpolation inequalities with weights,, \emph{Comm. Partial Differential Equations, 11 (1986), 1515. doi: 10.1080/03605308608820473. Google Scholar

[28]

C. Lin and Z. Wang, Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities,, \emph{Proc. Amer. Math. Soc.}, 132 (2004), 1685. doi: 10.1090/S0002-9939-04-07245-4. Google Scholar

[29]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The limit case, part 1 and part 2,, \emph{Rev. Mat. Iberoamericana, 1 (1985), 145. Google Scholar

[30]

R. Musina, Ground state solutions of a critical problem involving cylindrical weights,, \emph{Nonlinear Anal.}, 68 (2008), 3972. doi: 10.1016/j.na.2007.04.034. Google Scholar

[31]

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, \emph{Ann. Inst. H. Poinvar\'e Anal. Non Lin\'eaire}, 12 (1995), 319. Google Scholar

[32]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities,, \emph{Math. Z.}, 187 (1984), 511. doi: 10.1007/BF01174186. Google Scholar

show all references

References:
[1]

T. Bartsch, S. Peng and Z. Zhang, Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities,, \emph{Calc. Var. Partial Differential Equations}, 30 (2007), 113. doi: 10.1007/s00526-006-0086-1. Google Scholar

[2]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics,, \emph{Arch. Ration. Mech. Anal.}, 163 (2002), 259. doi: 10.1007/s002050200201. Google Scholar

[3]

J. Batt, W. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics,, \emph{Arch. Rational Mech. Anal.}, 93 (1986), 159. doi: 10.1007/BF00279958. Google Scholar

[4]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437. doi: 10.1002/cpa.3160360405. Google Scholar

[5]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, \emph{Compositio Math.}, 53 (1984), 259. Google Scholar

[6]

D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential,, \emph{J. Differential Equations}, 205 (2004), 521. doi: 10.1016/j.jde.2004.03.005. Google Scholar

[7]

D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, \emph{J. Differential Equations}, 224 (2006), 332. doi: 10.1016/j.jde.2005.07.010. Google Scholar

[8]

D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms,, \emph{J. Differential Equations}, 193 (2003), 424. doi: 10.1016/S0022-0396(03)00118-9. Google Scholar

[9]

D. Cao and S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential,, \emph{Calc. Var. Partial Differential Equations}, 38 (2010), 471. doi: 10.1007/s00526-009-0295-5. Google Scholar

[10]

F. Catrina and Z. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar

[11]

Z. Cheng and W. Zou, On an elliptic problem with critical exponent and Hardy potential,, \emph{J. Differential Equations}, 252 (2012), 969. doi: 10.1016/j.jde.2011.09.042. Google Scholar

[12]

J. Chern and C. Lin, Minimizer of Caffarelli-Kohn-Nirenberg inequlities with the singularity on the boundary,, \emph{Arch. Ration. Mech. Anal.}, 197 (2010), 401. doi: 10.1007/s00205-009-0269-y. Google Scholar

[13]

K. Chou and C. Chu, On the best constant for a weighted Sobolev-Hardy inequality,, \emph{J. London Math. Soc.}, 48 (1993), 137. doi: 10.1112/jlms/s2-48.1.137. Google Scholar

[14]

H. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities,, \emph{Indiana Univ. Math. J.}, 38 (1989), 235. Google Scholar

[15]

I. Ekeland and N. Ghoussoub, Selected new aspects of the calculus of variations in the large,, \emph{Bull. Amer. Math. Soc.}, 39 (2002), 207. doi: 10.1090/S0273-0979-02-00929-1. Google Scholar

[16]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, \emph{J. Differential Equations}, 177 (2001), 494. doi: 10.1006/jdeq.2000.3999. Google Scholar

[17]

D. Fortunato and E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains,, \emph{Proc. Roy. Soc. Edinburgh Sect.}, 105 (1987), 205. doi: 10.1017/S0308210500022046. Google Scholar

[18]

N. Ghoussoub and X. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 21 (2004), 767. doi: 10.1016/j.anihpc.2003.07.002. Google Scholar

[19]

N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities,, \emph{Geom. Funct. Anal.}, 16 (2006), 1201. doi: 10.1007/s00039-006-0579-2. Google Scholar

[20]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents,, \emph{Trans. Amer. Math. Soc.}, 352 (2000), 5703. doi: 10.1090/S0002-9947-00-02560-5. Google Scholar

[21]

C. H. Hsia, C. Lin and H. Wadade, Revisiting an idea of Brézis and Nirenberg,, \emph{J. Funct. Anal.}, 259 (2010), 1816. doi: 10.1016/j.jfa.2010.05.004. Google Scholar

[22]

D. Kang and S. Peng, Sign-changing solutions for elliptic problems with critical Sobolev-Hardy exponents,, \emph{J. Math. Anal. Appl.}, 291 (2004), 488. doi: 10.1016/j.jmaa.2003.11.012. Google Scholar

[23]

Y. Li, On the positive solutions of the Matukuma equation,, \emph{Duke Math. J.}, 70 (1993), 575. doi: 10.1215/S0012-7094-93-07012-3. Google Scholar

[24]

Y. Li and C. Lin, A nonlinear elliptic PDE and two Sobolev-Hardy critical exponents,, \emph{Arch. Ration. Mech. Anal.}, 203 (2012), 943. Google Scholar

[25]

Y. Li and W. Ni, On conformal scalar curvature equations in $\R^N$,, \emph{Duke Math. J.}, 57 (1988), 895. doi: 10.1215/S0012-7094-88-05740-7. Google Scholar

[26]

Y. Li and W. Ni, On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalization,, \emph{Arch. Rational Mech. Anal.}, 108 (1989), 175. doi: 10.1007/BF01053462. Google Scholar

[27]

C. Lin, Interpolation inequalities with weights,, \emph{Comm. Partial Differential Equations, 11 (1986), 1515. doi: 10.1080/03605308608820473. Google Scholar

[28]

C. Lin and Z. Wang, Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities,, \emph{Proc. Amer. Math. Soc.}, 132 (2004), 1685. doi: 10.1090/S0002-9939-04-07245-4. Google Scholar

[29]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The limit case, part 1 and part 2,, \emph{Rev. Mat. Iberoamericana, 1 (1985), 145. Google Scholar

[30]

R. Musina, Ground state solutions of a critical problem involving cylindrical weights,, \emph{Nonlinear Anal.}, 68 (2008), 3972. doi: 10.1016/j.na.2007.04.034. Google Scholar

[31]

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, \emph{Ann. Inst. H. Poinvar\'e Anal. Non Lin\'eaire}, 12 (1995), 319. Google Scholar

[32]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities,, \emph{Math. Z.}, 187 (1984), 511. doi: 10.1007/BF01174186. Google Scholar

[1]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[2]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[3]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[4]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[5]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[6]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[7]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[8]

Angela Pistoia, Tonia Ricciardi. Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5651-5692. doi: 10.3934/dcds.2017245

[9]

Norimichi Hirano, A. M. Micheletti, A. Pistoia. Existence of sign changing solutions for some critical problems on $\mathbb R^N$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 143-164. doi: 10.3934/cpaa.2005.4.143

[10]

Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure & Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125

[11]

J. Húska, Peter Poláčik, M.V. Safonov. Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Conference Publications, 2005, 2005 (Special) : 427-435. doi: 10.3934/proc.2005.2005.427

[12]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[13]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

[14]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[15]

Wei Long, Shuangjie Peng, Jing Yang. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 917-939. doi: 10.3934/dcds.2016.36.917

[16]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure & Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[17]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[18]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[19]

Teodora-Liliana Dinu. Entire solutions of the nonlinear eigenvalue logistic problem with sign-changing potential and absorption. Communications on Pure & Applied Analysis, 2003, 2 (3) : 311-321. doi: 10.3934/cpaa.2003.2.311

[20]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]