• Previous Article
    Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift
  • CPAA Home
  • This Issue
  • Next Article
    Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents
March  2015, 14(2): 421-437. doi: 10.3934/cpaa.2015.14.421

On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point

1. 

School of Mathematics, Shandong University, Jinan, Shandong 250100, China, China

Received  December 2013 Revised  July 2014 Published  December 2014

This paper focuses on quasi-periodic perturbation of four dimensional nonlinear quasi-periodic system. Using the KAM method, the perturbed system can be reduced to a suitable normal form with zero as equilibrium point by a quasi-periodic transformation. Hence, the perturbed system has a quasi-periodic solution near the equilibrium point.
Citation: Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421
References:
[1]

N. N. Bogoljubov, Y. A. Mitropolskii and A. M. Samoilenko, Methods Of Accelerated Convergence In Nonlinear Mechanics,, Springer, (1976). Google Scholar

[2]

H. Her and J. You, Full measure reducibility for generic one-parameter family of quasiperiodic linear systems,, \emph{J. Dynam. Differential Equations}, 20 (2008), 831. doi: 10.1007/s10884-008-9113-6. Google Scholar

[3]

A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points,, \emph{SIAM J. Math. Anal.}, 27 (1996), 1704. doi: 10.1137/S0036141094276913. Google Scholar

[4]

A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients,, \emph{J. Differential Equations}, 98 (1992), 111. doi: 10.1016/0022-0396(92)90107-X. Google Scholar

[5]

J. Moser, Convergent series expansion for quasi-periodic motions,, \emph{Math. Ann.}, 169 (1967), 136. Google Scholar

[6]

J. Xu, On Quasi-periodic perturbations of hyperbalic-type degeneate equilibrium point of a class of planar system,, \emph{Discrete and Continous Dynamical Systems}, 33 (2013), 2593. doi: doi:10.3934/dcds.2013.33.2593. Google Scholar

[7]

J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point,, \emph{J. Differential Equations}, 250 (2011), 551. doi: 10.1016/j.jde.2010.09.030. Google Scholar

[8]

J. Xu, Persistence of Floquet invariant tori for a class of non-conservative dynamical systems,, \emph{Proc. Amer. Math. Soc.}, 135 (2007), 805. doi: 10.1090/S0002-9939-06-08529-7. Google Scholar

[9]

J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate,, \emph{Proc. Amer. Math. Soc.}, 126 (1998), 1445. doi: 10.1090/S0002-9939-98-04523-7. Google Scholar

[10]

J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation,, \emph{Ergodic Theory and Dynamical Systems}, 31 (2011), 599. doi: 10.1017/S0143385709001114. Google Scholar

show all references

References:
[1]

N. N. Bogoljubov, Y. A. Mitropolskii and A. M. Samoilenko, Methods Of Accelerated Convergence In Nonlinear Mechanics,, Springer, (1976). Google Scholar

[2]

H. Her and J. You, Full measure reducibility for generic one-parameter family of quasiperiodic linear systems,, \emph{J. Dynam. Differential Equations}, 20 (2008), 831. doi: 10.1007/s10884-008-9113-6. Google Scholar

[3]

A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points,, \emph{SIAM J. Math. Anal.}, 27 (1996), 1704. doi: 10.1137/S0036141094276913. Google Scholar

[4]

A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients,, \emph{J. Differential Equations}, 98 (1992), 111. doi: 10.1016/0022-0396(92)90107-X. Google Scholar

[5]

J. Moser, Convergent series expansion for quasi-periodic motions,, \emph{Math. Ann.}, 169 (1967), 136. Google Scholar

[6]

J. Xu, On Quasi-periodic perturbations of hyperbalic-type degeneate equilibrium point of a class of planar system,, \emph{Discrete and Continous Dynamical Systems}, 33 (2013), 2593. doi: doi:10.3934/dcds.2013.33.2593. Google Scholar

[7]

J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point,, \emph{J. Differential Equations}, 250 (2011), 551. doi: 10.1016/j.jde.2010.09.030. Google Scholar

[8]

J. Xu, Persistence of Floquet invariant tori for a class of non-conservative dynamical systems,, \emph{Proc. Amer. Math. Soc.}, 135 (2007), 805. doi: 10.1090/S0002-9939-06-08529-7. Google Scholar

[9]

J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate,, \emph{Proc. Amer. Math. Soc.}, 126 (1998), 1445. doi: 10.1090/S0002-9939-98-04523-7. Google Scholar

[10]

J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation,, \emph{Ergodic Theory and Dynamical Systems}, 31 (2011), 599. doi: 10.1017/S0143385709001114. Google Scholar

[1]

Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593

[2]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[3]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

[4]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[5]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[6]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[7]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[8]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[9]

Wen Si, Fenfen Wang, Jianguo Si. Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method. Communications on Pure & Applied Analysis, 2020, 19 (1) : 541-585. doi: 10.3934/cpaa.2020027

[10]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[11]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[12]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[13]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[14]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[15]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[16]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[17]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks & Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[18]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[19]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[20]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]