# American Institute of Mathematical Sciences

March  2015, 14(2): 407-419. doi: 10.3934/cpaa.2015.14.407

## Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift

 1 Dipartimento di Matematica "F. Casorati”, Università di Pavia, Via Ferrata 1, 27100 Pavia 2 Dipartimento di Matematica E. De Giorgi, Università del Salento, 73100, Lecce 3 Dipartimento di Matematica "Ennio De Giorgi”, Università del Salento, C.P. 193, Lecce, I-73100 4 Department of Mathematics, Karlsruhe Institute of Technology, 76128 Karlsruhe

Received  December 2013 Revised  July 2014 Published  December 2014

We study second order elliptic operators whose diffusion coefficients degenerate at the boundary in first order and whose drift term strongly points outward. It is shown that these operators generate analytic semigroups in $L^2$ where they are equipped with their natural domain without boundary conditions. Hence, the corresponding parabolic problem can be solved with optimal regularity. In a previous work we had treated the case of inward pointing drift terms.
Citation: Simona Fornaro, Giorgio Metafune, Diego Pallara, Roland Schnaubelt. Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift. Communications on Pure & Applied Analysis, 2015, 14 (2) : 407-419. doi: 10.3934/cpaa.2015.14.407
##### References:
 [1] M. Campiti and G. Metafune, Ventcel's boundary conditions and analytic semigroups,, Arch. Math., 70 (1998), 377. doi: 10.1007/s000130050210. Google Scholar [2] P. Daskalopoulos and P. M. N. Feehan, Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance,, preprint, (). Google Scholar [3] P. Daskalopoulos and R. Hamilton, Regularity of the free boundary for the porous medium equation,, J. Amer. Math. Soc., 11 (1998), 899. doi: 10.1090/S0894-0347-98-00277-X. Google Scholar [4] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer-Verlag, (2000). Google Scholar [5] C. L. Epstein and R. Mazzeo, Degenerate Diffusion Operators Arising in Population Biology,, Ann. Math. Stud. 185, (2013). Google Scholar [6] P. M. N. Feehan and C. Pop, Degenerate elliptic operators in mathematical finance and Hölder continuity for solutions to variational equations and inequalities,, preprint, (). Google Scholar [7] P. M. N. Feehan and C. Pop, Schauder a priori estimates and regularity of solutions to boundary-degenerate elliptic linear second-order partial differential equations,, J. Differential Equations, 256 (2014), 895. doi: 10.1016/j.jde.2013.08.012. Google Scholar [8] W. Feller, The parabolic differential equations and the associated semi-groups of transformations,, Ann. of Math., 55 (1952), 468. Google Scholar [9] W. Feller, Diffusion processes in one dimension,, Trans. Amer. Math. Soc., 97 (1954), 1. Google Scholar [10] S. Fornaro, G. Metafune, D. Pallara and J. Prüss, $L^p$-theory for some elliptic and parabolic problems with first order degeneracy at the boundary,, J. Math. Pures Appl., 87 (2007), 367. doi: 10.1016/j.matpur.2007.02.001. Google Scholar [11] S. Fornaro, G. Metafune, D. Pallara and R. Schnaubelt, Degenerate operators of Tricomi type in $L^p$-spaces and in spaces of continuous functions,, J. Differential Equations, 252 (2012), 1182. doi: 10.1016/j.jde.2011.09.017. Google Scholar [12] S. Fornaro, G. Metafune, D. Pallara and R. Schnaubelt, One-dimensional degenerate operators in $L^p$-spaces,, J. Math. Anal. Appl., 402 (2013), 308. doi: 10.1016/j.jmaa.2013.01.030. Google Scholar [13] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar [14] C. Kienzler, Flat fronts and stability for the porous medium equation,, preprint, (). Google Scholar [15] J. U. Kim, An $L^p$ a priori estimate for the Tricomi equation in the upper half-space,, Trans. Amer. Math. Soc., 351 (1999), 4611. doi: 10.1090/S0002-9947-99-02349-1. Google Scholar [16] K.-H. Kim, Sobolev space theory of parabolic equations degenerating on the boundary of $C^1$ domains,, Comm. Partial Differential Equations, 32 (2007), 1261. doi: 10.1080/03605300600910449. Google Scholar [17] H. Koch, Non-euclidean singular integrals and the porous medium equation,, Habilitation thesis (1999), (1999). Google Scholar [18] J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of first order,, Comm. Pure Appl. Math., 20 (1967), 797. Google Scholar [19] P. C. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, (2004), 65. doi: 10.1007/978-3-540-44653-8_2. Google Scholar [20] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser Verlag, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar [21] A. Lunardi, Interpolation Theory,, Scuola Normale Superiore Pisa, (2009). Google Scholar [22] G. Metafune, Analyticity for some degenerate one-dimensional evolution equation,, Studia Math., 127 (1998), 251. Google Scholar [23] O. A. Oleinik and E. V. Radkevic, Second Order Equations with Non Negative Characteristic Form., Plenum Press, (1973). Google Scholar [24] E. M. Ouhabaz, Analysis of Heat Equations on Domains,, Princeton University Press, (2005). Google Scholar [25] N. Shimakura, Partial Differential Operators of Elliptic Type,, Amer. Math. Soc., (1992). Google Scholar [26] K.-T. Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations,, Osaka J. Math., 32 (1995), 275. Google Scholar [27] H. Tanabe, Functional Analytic Methods for Partial Diffeeential Equations,, Marcel Dekker, (1997). Google Scholar [28] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978). Google Scholar

show all references

##### References:
 [1] M. Campiti and G. Metafune, Ventcel's boundary conditions and analytic semigroups,, Arch. Math., 70 (1998), 377. doi: 10.1007/s000130050210. Google Scholar [2] P. Daskalopoulos and P. M. N. Feehan, Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance,, preprint, (). Google Scholar [3] P. Daskalopoulos and R. Hamilton, Regularity of the free boundary for the porous medium equation,, J. Amer. Math. Soc., 11 (1998), 899. doi: 10.1090/S0894-0347-98-00277-X. Google Scholar [4] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer-Verlag, (2000). Google Scholar [5] C. L. Epstein and R. Mazzeo, Degenerate Diffusion Operators Arising in Population Biology,, Ann. Math. Stud. 185, (2013). Google Scholar [6] P. M. N. Feehan and C. Pop, Degenerate elliptic operators in mathematical finance and Hölder continuity for solutions to variational equations and inequalities,, preprint, (). Google Scholar [7] P. M. N. Feehan and C. Pop, Schauder a priori estimates and regularity of solutions to boundary-degenerate elliptic linear second-order partial differential equations,, J. Differential Equations, 256 (2014), 895. doi: 10.1016/j.jde.2013.08.012. Google Scholar [8] W. Feller, The parabolic differential equations and the associated semi-groups of transformations,, Ann. of Math., 55 (1952), 468. Google Scholar [9] W. Feller, Diffusion processes in one dimension,, Trans. Amer. Math. Soc., 97 (1954), 1. Google Scholar [10] S. Fornaro, G. Metafune, D. Pallara and J. Prüss, $L^p$-theory for some elliptic and parabolic problems with first order degeneracy at the boundary,, J. Math. Pures Appl., 87 (2007), 367. doi: 10.1016/j.matpur.2007.02.001. Google Scholar [11] S. Fornaro, G. Metafune, D. Pallara and R. Schnaubelt, Degenerate operators of Tricomi type in $L^p$-spaces and in spaces of continuous functions,, J. Differential Equations, 252 (2012), 1182. doi: 10.1016/j.jde.2011.09.017. Google Scholar [12] S. Fornaro, G. Metafune, D. Pallara and R. Schnaubelt, One-dimensional degenerate operators in $L^p$-spaces,, J. Math. Anal. Appl., 402 (2013), 308. doi: 10.1016/j.jmaa.2013.01.030. Google Scholar [13] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar [14] C. Kienzler, Flat fronts and stability for the porous medium equation,, preprint, (). Google Scholar [15] J. U. Kim, An $L^p$ a priori estimate for the Tricomi equation in the upper half-space,, Trans. Amer. Math. Soc., 351 (1999), 4611. doi: 10.1090/S0002-9947-99-02349-1. Google Scholar [16] K.-H. Kim, Sobolev space theory of parabolic equations degenerating on the boundary of $C^1$ domains,, Comm. Partial Differential Equations, 32 (2007), 1261. doi: 10.1080/03605300600910449. Google Scholar [17] H. Koch, Non-euclidean singular integrals and the porous medium equation,, Habilitation thesis (1999), (1999). Google Scholar [18] J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of first order,, Comm. Pure Appl. Math., 20 (1967), 797. Google Scholar [19] P. C. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, (2004), 65. doi: 10.1007/978-3-540-44653-8_2. Google Scholar [20] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser Verlag, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar [21] A. Lunardi, Interpolation Theory,, Scuola Normale Superiore Pisa, (2009). Google Scholar [22] G. Metafune, Analyticity for some degenerate one-dimensional evolution equation,, Studia Math., 127 (1998), 251. Google Scholar [23] O. A. Oleinik and E. V. Radkevic, Second Order Equations with Non Negative Characteristic Form., Plenum Press, (1973). Google Scholar [24] E. M. Ouhabaz, Analysis of Heat Equations on Domains,, Princeton University Press, (2005). Google Scholar [25] N. Shimakura, Partial Differential Operators of Elliptic Type,, Amer. Math. Soc., (1992). Google Scholar [26] K.-T. Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations,, Osaka J. Math., 32 (1995), 275. Google Scholar [27] H. Tanabe, Functional Analytic Methods for Partial Diffeeential Equations,, Marcel Dekker, (1997). Google Scholar [28] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978). Google Scholar
 [1] Andrea Cianchi, Vladimir Maz'ya. Global gradient estimates in elliptic problems under minimal data and domain regularity. Communications on Pure & Applied Analysis, 2015, 14 (1) : 285-311. doi: 10.3934/cpaa.2015.14.285 [2] Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264 [3] Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213 [4] Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751 [5] Simona Fornaro, Luca Lorenzi. Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 747-772. doi: 10.3934/dcds.2007.18.747 [6] Francesco Della Pietra, Ireneo Peral. Breaking of resonance for elliptic problems with strong degeneration at infinity. Communications on Pure & Applied Analysis, 2011, 10 (2) : 593-612. doi: 10.3934/cpaa.2011.10.593 [7] Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897 [8] Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3137-3160. doi: 10.3934/cpaa.2019141 [9] Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191 [10] Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070 [11] Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010 [12] Eun Heui Kim. Boundary gradient estimates for subsonic solutions of compressible transonic potential flows. Conference Publications, 2007, 2007 (Special) : 573-579. doi: 10.3934/proc.2007.2007.573 [13] Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285 [14] N. V. Krylov. Some $L_{p}$-estimates for elliptic and parabolic operators with measurable coefficients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2073-2090. doi: 10.3934/dcdsb.2012.17.2073 [15] Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033 [16] Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801 [17] Luigi C. Berselli, Carlo R. Grisanti. On the regularity up to the boundary for certain nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 53-71. doi: 10.3934/dcdss.2016.9.53 [18] Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973 [19] Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491 [20] Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

2018 Impact Factor: 0.925