November  2015, 14(6): 2315-2334. doi: 10.3934/cpaa.2015.14.2315

Krasnosel'skii type formula and translation along trajectories method on the scale of fractional spaces

1. 

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Received  January 2015 Revised  May 2015 Published  September 2015

We provide a global continuation principle of periodic solutions for the equation $\dot u = - Au + F(t,u)$, where $ A:D(A) \to X$ is a sectorial operator on a Banach space $X$ and $F:[0, +\infty) \times X^\alpha \to X$ is a nonlinear map defined on a fractional space $X^\alpha$. The approach that we use in this paper is based upon the theory of topological invariants that applies in the situation when the Poincaré operator associated with the equation is endowed with some form of compactness.
Citation: Piotr Kokocki. Krasnosel'skii type formula and translation along trajectories method on the scale of fractional spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2315-2334. doi: 10.3934/cpaa.2015.14.2315
References:
[1]

A. Ćwiszewski, Topological degree methods for perturbations of operators generating compact $C_0$ semigroups,, \emph{Journal of Differential Equations}, 220 (2006), 434. doi: 10.1016/j.jde.2005.04.007. Google Scholar

[2]

A. Ćwiszewski, Degree theory for perturbations of m-accretive operators generating compact semigroups with constraints,, \emph{Journal of Evolution Equations}, 7 (2007), 1. doi: 10.1007/s00028-006-0225-3. Google Scholar

[3]

A. Ćwiszewski, Positive periodic solutions of parabolic evolution problems: A translation along trajectories approach,, \emph{Central European Journal of Mathematics}, 9 (2011), 244. doi: 10.2478/s11533-011-0010-6. Google Scholar

[4]

A. Ćwiszewski, Forced oscillations in strongly damped beam equation,, \emph{Topol. Methods Nonlinear Anal.}, 37 (2011), 259. Google Scholar

[5]

A. Ćwiszewski, Averaging principle and hyperbolic evolution equations,, \emph{Nonlinear Analysis: Theory, 75 (2012), 2362. doi: 10.1016/j.na.2011.10.034. Google Scholar

[6]

A. Ćwiszewski and P. Kokocki, Krasnosel'skii type formula and translation along trajectories method for evolution equations,, \emph{Discrete Continuous Dynam. Systems - B}, 22 (2008), 605. doi: 10.3934/dcds.2008.22.605. Google Scholar

[7]

A. Ćwiszewski and P. Kokocki, Periodic solutions of nonlinear hyperbolic evolution systems,, \emph{Journal of Evolution Equations}, 10 (2010), 677. doi: 10.1007/s00028-010-0066-y. Google Scholar

[8]

J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems,, \emph{London Mathematical Society Lectures Note Series}, 278 (2000). doi: 10.1017/CBO9780511526404. Google Scholar

[9]

K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations,, \emph{Graduate Texts in Mathematics}, 194 (2000). Google Scholar

[10]

M. Furi and M. P. Pera, Global bifurcation of fixed points and the Poincaré translation operator on manifolds,, \emph{Annali di Matematica pura ed applicata}, 173 (1997), 313. doi: 10.1007/BF01783474. Google Scholar

[11]

M. Furi and M. P. Pera, A continuation principle for forced oscillations on differentiable manifolds,, \emph{Pacific Journal of Mathematics}, 121 (1986), 321. Google Scholar

[12]

R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations,, {Lecture Notes in Mathematics}, 586 (1977). Google Scholar

[13]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Verlag, (1981). Google Scholar

[14]

E. Hille and R. Phillips, Functional Analysis and Semi-Groups,, American Mathematical Society, (1957). Google Scholar

[15]

M. Kamenskii, O. Makarenkov and P. Nistri, A continuation principle for a class of periodically perturbed autonomous systems,, \emph{Mathematische Nachrichten}, 281 (2008), 42. doi: 10.1002/mana.200610586. Google Scholar

[16]

P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance,, \emph{Nonlinear Analysis: Theory, 85 (2013), 253. doi: 10.1016/j.na.2013.02.030. Google Scholar

[17]

B. Laloux and J. Mawhin, Multiplicity, Leray-Schauder formula, and bifurcation,, \emph{Jourbal of Differential Equations}, 24 (1977), 309. Google Scholar

[18]

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems,, Amer. Math. Soc., (1979). Google Scholar

[19]

J. Mawhin, Continuation theorems and periodic solutions of ordinary differential equations,, in \emph{Topological methods in differential equations and inclusions}, (1995). Google Scholar

[20]

J. Mawhin, Continuation theorems for nonlinear operator equations: the legacy of Leray and Schauder,, \emph{Travaux mathmatiques}, (1999). Google Scholar

[21]

J. Mawhin, Topological bifurcation theory: old and new,, \emph{Progress in variational methods}, (2011). Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[23]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, VEB Deutscher Verlag der Wissenschaften, (1978). Google Scholar

show all references

References:
[1]

A. Ćwiszewski, Topological degree methods for perturbations of operators generating compact $C_0$ semigroups,, \emph{Journal of Differential Equations}, 220 (2006), 434. doi: 10.1016/j.jde.2005.04.007. Google Scholar

[2]

A. Ćwiszewski, Degree theory for perturbations of m-accretive operators generating compact semigroups with constraints,, \emph{Journal of Evolution Equations}, 7 (2007), 1. doi: 10.1007/s00028-006-0225-3. Google Scholar

[3]

A. Ćwiszewski, Positive periodic solutions of parabolic evolution problems: A translation along trajectories approach,, \emph{Central European Journal of Mathematics}, 9 (2011), 244. doi: 10.2478/s11533-011-0010-6. Google Scholar

[4]

A. Ćwiszewski, Forced oscillations in strongly damped beam equation,, \emph{Topol. Methods Nonlinear Anal.}, 37 (2011), 259. Google Scholar

[5]

A. Ćwiszewski, Averaging principle and hyperbolic evolution equations,, \emph{Nonlinear Analysis: Theory, 75 (2012), 2362. doi: 10.1016/j.na.2011.10.034. Google Scholar

[6]

A. Ćwiszewski and P. Kokocki, Krasnosel'skii type formula and translation along trajectories method for evolution equations,, \emph{Discrete Continuous Dynam. Systems - B}, 22 (2008), 605. doi: 10.3934/dcds.2008.22.605. Google Scholar

[7]

A. Ćwiszewski and P. Kokocki, Periodic solutions of nonlinear hyperbolic evolution systems,, \emph{Journal of Evolution Equations}, 10 (2010), 677. doi: 10.1007/s00028-010-0066-y. Google Scholar

[8]

J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems,, \emph{London Mathematical Society Lectures Note Series}, 278 (2000). doi: 10.1017/CBO9780511526404. Google Scholar

[9]

K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations,, \emph{Graduate Texts in Mathematics}, 194 (2000). Google Scholar

[10]

M. Furi and M. P. Pera, Global bifurcation of fixed points and the Poincaré translation operator on manifolds,, \emph{Annali di Matematica pura ed applicata}, 173 (1997), 313. doi: 10.1007/BF01783474. Google Scholar

[11]

M. Furi and M. P. Pera, A continuation principle for forced oscillations on differentiable manifolds,, \emph{Pacific Journal of Mathematics}, 121 (1986), 321. Google Scholar

[12]

R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations,, {Lecture Notes in Mathematics}, 586 (1977). Google Scholar

[13]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Verlag, (1981). Google Scholar

[14]

E. Hille and R. Phillips, Functional Analysis and Semi-Groups,, American Mathematical Society, (1957). Google Scholar

[15]

M. Kamenskii, O. Makarenkov and P. Nistri, A continuation principle for a class of periodically perturbed autonomous systems,, \emph{Mathematische Nachrichten}, 281 (2008), 42. doi: 10.1002/mana.200610586. Google Scholar

[16]

P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance,, \emph{Nonlinear Analysis: Theory, 85 (2013), 253. doi: 10.1016/j.na.2013.02.030. Google Scholar

[17]

B. Laloux and J. Mawhin, Multiplicity, Leray-Schauder formula, and bifurcation,, \emph{Jourbal of Differential Equations}, 24 (1977), 309. Google Scholar

[18]

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems,, Amer. Math. Soc., (1979). Google Scholar

[19]

J. Mawhin, Continuation theorems and periodic solutions of ordinary differential equations,, in \emph{Topological methods in differential equations and inclusions}, (1995). Google Scholar

[20]

J. Mawhin, Continuation theorems for nonlinear operator equations: the legacy of Leray and Schauder,, \emph{Travaux mathmatiques}, (1999). Google Scholar

[21]

J. Mawhin, Topological bifurcation theory: old and new,, \emph{Progress in variational methods}, (2011). Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[23]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, VEB Deutscher Verlag der Wissenschaften, (1978). Google Scholar

[1]

Saulo R.M. Barros, Antônio L. Pereira, Cláudio Possani, Adilson Simonis. Spatially periodic equilibria for a non local evolution equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 937-948. doi: 10.3934/dcds.2003.9.937

[2]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[3]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[4]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[5]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[6]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[7]

Christian Pötzsche, Evamaria Russ. Topological decoupling and linearization of nonautonomous evolution equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1235-1268. doi: 10.3934/dcdss.2016050

[8]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Evolution of mixed dispersal in periodic environments. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2047-2072. doi: 10.3934/dcdsb.2012.17.2047

[9]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations & Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029

[10]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[11]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[12]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 47-66. doi: 10.3934/dcdss.2020003

[13]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[14]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[15]

Leszek Gasiński, Nikolaos S. Papageorgiou. Periodic solutions for nonlinear nonmonotone evolution inclusions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 219-238. doi: 10.3934/dcdsb.2018015

[16]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[17]

Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277

[18]

Alain Haraux. On the fast solution of evolution equations with a rapidly decaying source term. Mathematical Control & Related Fields, 2011, 1 (1) : 1-20. doi: 10.3934/mcrf.2011.1.1

[19]

Md. Abul Kalam Azad, Edite M.G.P. Fernandes. A modified differential evolution based solution technique for economic dispatch problems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1017-1038. doi: 10.3934/jimo.2012.8.1017

[20]

Anthony W. Baker, Michael Dellnitz, Oliver Junge. Topological method for rigorously computing periodic orbits using Fourier modes. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 901-920. doi: 10.3934/dcds.2005.13.901

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]