• Previous Article
    Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain
  • CPAA Home
  • This Issue
  • Next Article
    On the initial value problem of fractional stochastic evolution equations in Hilbert spaces
September  2015, 14(5): 1803-1816. doi: 10.3934/cpaa.2015.14.1803

Positive solution for quasilinear Schrödinger equations with a parameter

1. 

Business School of Hunan University, Changsha, Hunan 410082, China

Received  September 2014 Revised  February 2015 Published  June 2015

In this paper, we study the following quasilinear Schrödinger equations of the form \begin{eqnarray} -\Delta u+V(x)u-[\Delta(1+u^2)^{\alpha/2}]\frac{\alpha u}{2(1+u^2)^{(2-\alpha)/2}}=\mathrm{g}(x,u), \end{eqnarray} where $1 \le \alpha \le 2$, $N \ge 3$, $V\in C(R^N, R)$ and $\mathrm{g}\in C(R^N\times R, R)$. By using a change of variables, we get new equations, whose respective associated functionals are well defined in $H^1(R^N)$ and satisfy the geometric hypotheses of the mountain pass theorem. Using the special techniques, the existence of positive solutions is studied.
Citation: GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803
References:
[1]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations: the critical exponential case,, \emph{Nonlinear Anal.}, 67 (2007), 3357. doi: 10.1016/j.na.2006.10.018. Google Scholar

[2]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 248 (2010), 722. doi: 10.1016/j.jde.2009.11.030. Google Scholar

[3]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, \emph{Nonlinear Analysis: Theorey, 56 (2004), 213. doi: 10.1016/j.na.2003.09.008. Google Scholar

[4]

Y. Cheng and J. Yang, Positive solution to a class of relativistic nonlinear Schrödinger equation,, \emph{J. Math. Anal. Appl.}, 411 (2014), 665. doi: 10.1016/j.jmaa.2013.10.006. Google Scholar

[5]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{Journal of the physical Society of Japan}, 50 (1981), 3262. Google Scholar

[6]

P. L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact cases, part I and part II,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\, 1 (1984), 109. Google Scholar

[7]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves,, \emph{JETP Letters}, 27 (1978), 517. Google Scholar

[8]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, \emph{Journal of Differential Equations}, 187 (2003), 473. doi: 10.1016/S0022-0396(02)00064-5. Google Scholar

[9]

E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{Journal of Mathematical Physics}, 24 (1983), 2764. doi: 10.1063/1.525675. Google Scholar

[10]

J. Liu and Z. Q. Wang, Soliton solutions for a quasilinear Schrödinger equations I,, \emph{Proc. Amer. Math. Soc.}, 131 (2003), 441. doi: 10.1090/S0002-9939-02-06783-7. Google Scholar

[11]

J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations}, 29 (2004), 879. doi: 10.1081/PDE-120037335. Google Scholar

[12]

A. Nakamura, Damping and modification of exciton solitary waves,, \emph{J. Phys. Soc.}, 42 (1977), 1823. Google Scholar

[13]

J. M. do Ó and U. Secero, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, \emph{Cale. Var. Partial Differential Equations}, 38 (2010), 275. doi: 10.1007/s00526-009-0286-6. Google Scholar

[14]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities,, \emph{Phys. Fluids}, 19 (1976), 872. Google Scholar

[15]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations}, 14 (2002), 329. doi: 10.1007/s005260100105. Google Scholar

[16]

D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation,, \emph{Nonlinearity}, 23 (2010), 1221. doi: 10.1088/0951-7715/23/5/011. Google Scholar

[17]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations,, \emph{Nonlinear Analysis: Theorem, 80 (2013), 194. doi: 10.1016/j.na.2012.10.005. Google Scholar

[18]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 39 (2010), 722. doi: 10.1007/s00526-009-0299-1. Google Scholar

[19]

Xian Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter,, \emph{J. Differential Equations}, 256 (2014), 2619. doi: 10.1016/j.jde.2014.01.026. Google Scholar

[20]

M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities,, \emph{Nonlinear Analysis}, 75 (2012), 5362. doi: 10.1016/j.na.2012.04.054. Google Scholar

[21]

J. Zhang, X. H. Tang and W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation,, \emph{Applied Mathematics Letters}, 37 (2014), 131. doi: 10.1016/j.aml.2014.06.010. Google Scholar

[22]

J. Zhang, X. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential,, \emph{Journal of Mathematical Analysis and Applications}, 420 (2014), 1762. doi: 10.1016/j.jmaa.2014.06.055. Google Scholar

show all references

References:
[1]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations: the critical exponential case,, \emph{Nonlinear Anal.}, 67 (2007), 3357. doi: 10.1016/j.na.2006.10.018. Google Scholar

[2]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 248 (2010), 722. doi: 10.1016/j.jde.2009.11.030. Google Scholar

[3]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, \emph{Nonlinear Analysis: Theorey, 56 (2004), 213. doi: 10.1016/j.na.2003.09.008. Google Scholar

[4]

Y. Cheng and J. Yang, Positive solution to a class of relativistic nonlinear Schrödinger equation,, \emph{J. Math. Anal. Appl.}, 411 (2014), 665. doi: 10.1016/j.jmaa.2013.10.006. Google Scholar

[5]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{Journal of the physical Society of Japan}, 50 (1981), 3262. Google Scholar

[6]

P. L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact cases, part I and part II,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\, 1 (1984), 109. Google Scholar

[7]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves,, \emph{JETP Letters}, 27 (1978), 517. Google Scholar

[8]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, \emph{Journal of Differential Equations}, 187 (2003), 473. doi: 10.1016/S0022-0396(02)00064-5. Google Scholar

[9]

E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{Journal of Mathematical Physics}, 24 (1983), 2764. doi: 10.1063/1.525675. Google Scholar

[10]

J. Liu and Z. Q. Wang, Soliton solutions for a quasilinear Schrödinger equations I,, \emph{Proc. Amer. Math. Soc.}, 131 (2003), 441. doi: 10.1090/S0002-9939-02-06783-7. Google Scholar

[11]

J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations}, 29 (2004), 879. doi: 10.1081/PDE-120037335. Google Scholar

[12]

A. Nakamura, Damping and modification of exciton solitary waves,, \emph{J. Phys. Soc.}, 42 (1977), 1823. Google Scholar

[13]

J. M. do Ó and U. Secero, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, \emph{Cale. Var. Partial Differential Equations}, 38 (2010), 275. doi: 10.1007/s00526-009-0286-6. Google Scholar

[14]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities,, \emph{Phys. Fluids}, 19 (1976), 872. Google Scholar

[15]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations}, 14 (2002), 329. doi: 10.1007/s005260100105. Google Scholar

[16]

D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation,, \emph{Nonlinearity}, 23 (2010), 1221. doi: 10.1088/0951-7715/23/5/011. Google Scholar

[17]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations,, \emph{Nonlinear Analysis: Theorem, 80 (2013), 194. doi: 10.1016/j.na.2012.10.005. Google Scholar

[18]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 39 (2010), 722. doi: 10.1007/s00526-009-0299-1. Google Scholar

[19]

Xian Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter,, \emph{J. Differential Equations}, 256 (2014), 2619. doi: 10.1016/j.jde.2014.01.026. Google Scholar

[20]

M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities,, \emph{Nonlinear Analysis}, 75 (2012), 5362. doi: 10.1016/j.na.2012.04.054. Google Scholar

[21]

J. Zhang, X. H. Tang and W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation,, \emph{Applied Mathematics Letters}, 37 (2014), 131. doi: 10.1016/j.aml.2014.06.010. Google Scholar

[22]

J. Zhang, X. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential,, \emph{Journal of Mathematical Analysis and Applications}, 420 (2014), 1762. doi: 10.1016/j.jmaa.2014.06.055. Google Scholar

[1]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[2]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[3]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[4]

Xiang-Dong Fang. Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1603-1615. doi: 10.3934/cpaa.2017077

[5]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[6]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[7]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[8]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[9]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[10]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[11]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[12]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

[13]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[14]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[15]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[16]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[17]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

[18]

Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429

[19]

Yaotian Shen, Youjun Wang. A class of generalized quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2016, 15 (3) : 853-870. doi: 10.3934/cpaa.2016.15.853

[20]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]