September  2015, 14(5): 1603-1621. doi: 10.3934/cpaa.2015.14.1603

Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

2. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

Received  April 2012 Revised  July 2012 Published  June 2015

In this paper we strengthen some results on the existence and properties of pullback attractors for a 2D Navier-Stokes model with finite delay formulated in [Caraballo and Real, J. Differential Equations 205 (2004), 271--297]. Actually, we prove that under suitable assumptions, pullback attractors not only of fixed bounded sets but also of a set of tempered universes do exist. Moreover, thanks to regularity results, the attraction from different phase spaces also happens in $C([-h,0];V)$. Finally, from comparison results of attractors, and under an additional hypothesis, we establish that all these families of attractors are in fact the same object.
Citation: Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603
References:
[1]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, \emph{Nonlinear Anal.}, 64 (2006), 484. doi: 10.1016/j.na.2005.03.111. Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, \emph{C. R. Math. Acad. Sci. Paris}, 342 (2006), 263. doi: 10.1016/j.crma.2005.12.015. Google Scholar

[3]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, \emph{R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.}, 457 (2001), 2441. doi: 10.1098/rspa.2001.0807. Google Scholar

[4]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays,, \emph{R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.}, 459 (2003), 3181. doi: 10.1098/rspa.2003.1166. Google Scholar

[5]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, \emph{J. Differential Equations}, 205 (2004), 271. doi: 10.1016/j.jde.2004.04.012. Google Scholar

[6]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, \emph{Rend. Sem. Mat. Univ. Padova}, 31 (1961), 308. Google Scholar

[7]

J. García-Luengo, P. Marín-Rubio and J. Real, $H^2$-boundedness of the pullback attractors for non-autonomous 2D Navier-Stokes equations in bounded domains,, \emph{Nonlinear Anal.}, 74 (2011), 4882. doi: 10.1016/j.na.2011.04.063. Google Scholar

[8]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour,, \emph{J. Differential Equations}, 252 (2012), 4333. doi: 10.1016/j.jde.2012.01.010. Google Scholar

[9]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity,, \emph{Adv. Nonlinear Stud.}, 13 (2013), 331. Google Scholar

[10]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains,, \emph{Nonlinear Anal.}, 64 (2006), 1100. doi: 10.1016/j.na.2005.05.057. Google Scholar

[11]

S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 16 (2011), 225. doi: 10.3934/dcdsb.2011.16.225. Google Scholar

[12]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969). Google Scholar

[13]

A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation,, \emph{IEEE Trans. Automat. Control}, 29 (1984), 1058. doi: 10.1109/TAC.1984.1103436. Google Scholar

[14]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 655. doi: 10.3934/dcdsb.2010.14.655. Google Scholar

[15]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays,, \emph{Adv. Nonlinear Stud.}, 11 (2011), 917. Google Scholar

[16]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays,, \emph{Discrete Contin. Dyn. Syst.}, 31 (2011), 779. doi: 10.3934/dcds.2011.31.779. Google Scholar

[17]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains,, \emph{Nonlinear Anal.}, 67 (2007), 2784. doi: 10.1016/j.na.2006.09.035. Google Scholar

[18]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, \emph{Nonlinear Anal.}, 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065. Google Scholar

[19]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators,, \emph{Discrete Contin. Dyn. Syst.}, 26 (2010), 989. doi: 10.3934/dcds.2010.26.989. Google Scholar

[20]

P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case,, \emph{Nonlinear Anal.}, 74 (2011), 2012. doi: 10.1016/j.na.2010.11.008. Google Scholar

[21]

G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations,, \emph{Discrete Contin. Dyn. Syst.}, 21 (2008), 1245. doi: 10.3934/dcds.2008.21.1245. Google Scholar

[22]

J. C. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge University Press, (2001). doi: 10.1007/978-94-010-0732-0. Google Scholar

[23]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, \emph{Nonlinear Anal.}, 32 (1998), 71. doi: 10.1016/S0362-546X(97)00453-7. Google Scholar

[24]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[25]

R. Temam, Navier-Stokes equations, Theory and Numerical Analysis,, 2nd. ed., (1979). Google Scholar

show all references

References:
[1]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, \emph{Nonlinear Anal.}, 64 (2006), 484. doi: 10.1016/j.na.2005.03.111. Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, \emph{C. R. Math. Acad. Sci. Paris}, 342 (2006), 263. doi: 10.1016/j.crma.2005.12.015. Google Scholar

[3]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, \emph{R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.}, 457 (2001), 2441. doi: 10.1098/rspa.2001.0807. Google Scholar

[4]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays,, \emph{R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.}, 459 (2003), 3181. doi: 10.1098/rspa.2003.1166. Google Scholar

[5]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, \emph{J. Differential Equations}, 205 (2004), 271. doi: 10.1016/j.jde.2004.04.012. Google Scholar

[6]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, \emph{Rend. Sem. Mat. Univ. Padova}, 31 (1961), 308. Google Scholar

[7]

J. García-Luengo, P. Marín-Rubio and J. Real, $H^2$-boundedness of the pullback attractors for non-autonomous 2D Navier-Stokes equations in bounded domains,, \emph{Nonlinear Anal.}, 74 (2011), 4882. doi: 10.1016/j.na.2011.04.063. Google Scholar

[8]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour,, \emph{J. Differential Equations}, 252 (2012), 4333. doi: 10.1016/j.jde.2012.01.010. Google Scholar

[9]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity,, \emph{Adv. Nonlinear Stud.}, 13 (2013), 331. Google Scholar

[10]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains,, \emph{Nonlinear Anal.}, 64 (2006), 1100. doi: 10.1016/j.na.2005.05.057. Google Scholar

[11]

S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 16 (2011), 225. doi: 10.3934/dcdsb.2011.16.225. Google Scholar

[12]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969). Google Scholar

[13]

A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation,, \emph{IEEE Trans. Automat. Control}, 29 (1984), 1058. doi: 10.1109/TAC.1984.1103436. Google Scholar

[14]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 655. doi: 10.3934/dcdsb.2010.14.655. Google Scholar

[15]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays,, \emph{Adv. Nonlinear Stud.}, 11 (2011), 917. Google Scholar

[16]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays,, \emph{Discrete Contin. Dyn. Syst.}, 31 (2011), 779. doi: 10.3934/dcds.2011.31.779. Google Scholar

[17]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains,, \emph{Nonlinear Anal.}, 67 (2007), 2784. doi: 10.1016/j.na.2006.09.035. Google Scholar

[18]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, \emph{Nonlinear Anal.}, 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065. Google Scholar

[19]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators,, \emph{Discrete Contin. Dyn. Syst.}, 26 (2010), 989. doi: 10.3934/dcds.2010.26.989. Google Scholar

[20]

P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case,, \emph{Nonlinear Anal.}, 74 (2011), 2012. doi: 10.1016/j.na.2010.11.008. Google Scholar

[21]

G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations,, \emph{Discrete Contin. Dyn. Syst.}, 21 (2008), 1245. doi: 10.3934/dcds.2008.21.1245. Google Scholar

[22]

J. C. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge University Press, (2001). doi: 10.1007/978-94-010-0732-0. Google Scholar

[23]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, \emph{Nonlinear Anal.}, 32 (1998), 71. doi: 10.1016/S0362-546X(97)00453-7. Google Scholar

[24]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[25]

R. Temam, Navier-Stokes equations, Theory and Numerical Analysis,, 2nd. ed., (1979). Google Scholar

[1]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[2]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[3]

Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643

[4]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[5]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[6]

Pedro Marín-Rubio, José Real. Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 989-1006. doi: 10.3934/dcds.2010.26.989

[7]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[8]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[9]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[10]

Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

[11]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[12]

Hongyong Cui, Mirelson M. Freitas, José A. Langa. Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1297-1324. doi: 10.3934/dcdsb.2018152

[13]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[14]

Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic & Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015

[15]

P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937

[16]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

[17]

Rafael Vázquez, Emmanuel Trélat, Jean-Michel Coron. Control for fast and stable Laminar-to-High-Reynolds-Numbers transfer in a 2D Navier-Stokes channel flow. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 925-956. doi: 10.3934/dcdsb.2008.10.925

[18]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[19]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[20]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

[Back to Top]