May  2015, 14(3): 1147-1167. doi: 10.3934/cpaa.2015.14.1147

Steady-state solutions and stability for a cubic autocatalysis model

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, China

2. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119

3. 

Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, China

Received  May 2014 Revised  October 2015 Published  March 2015

A reaction-diffusion system, based on the cubic autocatalytic reaction scheme, with the prescribed concentration boundary conditions is considered. The linear stability of the unique spatially homogeneous steady state solution is discussed in detail to reveal a necessary condition for the bifurcation of this solution. The spatially non-uniform stationary structures, especially bifurcating from the double eigenvalue, are studied by the use of Lyapunov-Schmidt technique and singularity theory. Further information about the multiplicity and stability of the bifurcation solutions are obtained. Numerical examples are presented to support our theoretical results.
Citation: Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147
References:
[1]

J. C. Tsai, Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay,, \emph{Quart. Appl. Math.}, 69 (2011), 123. Google Scholar

[2]

R. Peng and F. Yi, On spatiotemporal pattern formation in a diffusive bimolecular model,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 15 (2011), 217. doi: 10.3934/dcdsb.2011.15.217. Google Scholar

[3]

Y. You, Dynamics of three-component reversible Gray-Scott model,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 1671. doi: 10.3934/dcdsb.2010.14.1671. Google Scholar

[4]

X. F. Chen and Y. W. Qi, Propagation of local disturbances in reaction diffusion systems modeling quadratic autocatalysis,, \emph{SIAM J. Appl. Math.}, 69 (2008), 273. doi: 10.1137/07070276X. Google Scholar

[5]

A. L. Kay, D. J. Needham and J. A. Leach, Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay. I. Permanent form travelling waves,, \emph{Nonlinearity}, 16 (2003), 735. doi: 10.1088/0951-7715/16/2/322. Google Scholar

[6]

J. A. Leach and J. C. Wei, Pattern formation in a simple chemical system with general orders of autocatalysis and decay. I. Stability analysis,, \emph{Phys. D}, 180 (2003), 185. doi: 10.1016/S0167-2789(03)00065-4. Google Scholar

[7]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability,, \emph{Chem. Eng. Sci.}, 39 (1983), 29. Google Scholar

[8]

P. Gray and S. K. Scott, Autocatalytic reactions in the CSTR: oscillations and instabilities in the system $A + 2B\rightarrow 3B$; $B\rightarrow C$,, \emph{Chem. Eng. Sci.}, 39 (1984), 1087. Google Scholar

[9]

A. D'Anna, P. G. Lignola and S. K. Scott, The application of singularity theory to isothermal autocatalytic open systems,, \emph{Proc. Roy. Soc. A}, 403 (1986), 341. Google Scholar

[10]

B. Peng, S. K. Scott and K. Showalter, Period doubling and chaos in a three variable autocatalator,, \emph{J. Phys. Chem.}, 94 (1990), 5243. Google Scholar

[11]

D. T. Lynch, Chaotic behavior of reactions systems: mixed cubic and quadratic autocatalysis,, \emph{Chem. Eng. Sci.}, 47 (1992), 4435. Google Scholar

[12]

K. Alhumaizi and R. Aris, Chaos in a simple two-phase reactor,, \emph{Chaos Solitons Fractals}, 4 (1994), 1985. Google Scholar

[13]

H. I. Abdel-Gawad and A. M. El-Shrae, Approximate solutions to the two-cell cubic autocatalytic reaction model,, \emph{Kyungpook Math. J.}, 44 (2004), 187. Google Scholar

[14]

E. A. Elrifai, On cubic autocatalytic chemical reaction model, CSTR and invariants of knots,, \emph{Far East J. Appl. Math.}, 32 (2008), 435. Google Scholar

[15]

J. H. Merkin, D. J. Needham and S. K. Scott, Oscillatory chemical reactions in closed vessels,, \emph{Proc. Roy. Soc. London Ser. A}, 406 (1986), 299. Google Scholar

[16]

A. B. Finlayson and J. H. Merkin, Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system,, \emph{J. Engrg. Math.}, 38 (2000), 279. doi: 10.1023/A:1004799200173. Google Scholar

[17]

L. S. Chen and D. D. Wang, A biochemical oscillation,, \emph{Acta Math. Sci. Ser. B Engl. Ed.}, 5 (1985), 261. Google Scholar

[18]

J. H. Merkin, D. J. Needham and S. K. Scott, On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme,, \emph{SIAM J. Appl. Math.}, 47 (1987), 1040. doi: 10.1137/0147068. Google Scholar

[19]

J. H. Merkin and D. J. Needham, Reaction-diffusion in a simple pooled chemical system,, \emph{Dyn. Stab. Syst.}, 4 (1989), 141. doi: 10.1080/02681118908806069. Google Scholar

[20]

D. J. Needham and J. H. Merkin, Pattern formation through reaction and diffusion in a simple pooled-chemical system,, \emph{Dyn. Stab. Syst.}, 4 (1989), 259. doi: 10.1080/02681118908806076. Google Scholar

[21]

R. Hill, J. H. Merkin and D. J. Needham, Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme,, \emph{J. Engrg. Math.}, 29 (1995), 413. doi: 10.1007/BF00043976. Google Scholar

[22]

J. Jang, W. M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model,, \emph{J. Dynam. Differential Equations}, 16 (2005), 297. doi: 10.1007/s10884-004-2782-x. Google Scholar

[23]

M. H. Wei, J. H. Wu and G. H. Guo, Turing structures and stability for the 1-D Lengyel-Epstein system,, \emph{J. Math. Chem.}, 50 (2012), 2374. doi: 10.1007/s10910-012-0037-3. Google Scholar

[24]

M. G. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalue,, \emph{J. Funct. Anal.}, 8 (1971), 321. Google Scholar

[25]

K. J. Brown, Local and global bifurcation results for a semilinear boundary value problem,, \emph{J. Differential Equations}, 239 (2007), 296. doi: 10.1016/j.jde.2007.05.013. Google Scholar

[26]

D. Schaeffer and M. Golubitsky, Bifurcation analysis near a double eigenvalue of a model chemical reaction,, \emph{Arch. Rational Mech. Anal.}, 75 (1981), 315. doi: 10.1007/BF00256382. Google Scholar

[27]

M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I,, Springer, (1985). doi: 10.1007/978-1-4612-5034-0. Google Scholar

[28]

M. Golubitsky and D. Schaeffer, Imperfect bifurcation in the presence of symmetry,, \emph{Comm. Math. Phys.}, 67 (1979), 205. Google Scholar

[29]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, \emph{J. Funct. Anal.}, 7 (1971), 487. Google Scholar

[30]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, \emph{Nonlinear Anal.}, 39 (2000), 817. doi: 10.1016/S0362-546X(98)00250-8. Google Scholar

[31]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory,, \emph{Comm. Pure Appl. Math.}, 32 (1979), 21. doi: 10.1002/cpa.3160320103. Google Scholar

show all references

References:
[1]

J. C. Tsai, Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay,, \emph{Quart. Appl. Math.}, 69 (2011), 123. Google Scholar

[2]

R. Peng and F. Yi, On spatiotemporal pattern formation in a diffusive bimolecular model,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 15 (2011), 217. doi: 10.3934/dcdsb.2011.15.217. Google Scholar

[3]

Y. You, Dynamics of three-component reversible Gray-Scott model,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 1671. doi: 10.3934/dcdsb.2010.14.1671. Google Scholar

[4]

X. F. Chen and Y. W. Qi, Propagation of local disturbances in reaction diffusion systems modeling quadratic autocatalysis,, \emph{SIAM J. Appl. Math.}, 69 (2008), 273. doi: 10.1137/07070276X. Google Scholar

[5]

A. L. Kay, D. J. Needham and J. A. Leach, Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay. I. Permanent form travelling waves,, \emph{Nonlinearity}, 16 (2003), 735. doi: 10.1088/0951-7715/16/2/322. Google Scholar

[6]

J. A. Leach and J. C. Wei, Pattern formation in a simple chemical system with general orders of autocatalysis and decay. I. Stability analysis,, \emph{Phys. D}, 180 (2003), 185. doi: 10.1016/S0167-2789(03)00065-4. Google Scholar

[7]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability,, \emph{Chem. Eng. Sci.}, 39 (1983), 29. Google Scholar

[8]

P. Gray and S. K. Scott, Autocatalytic reactions in the CSTR: oscillations and instabilities in the system $A + 2B\rightarrow 3B$; $B\rightarrow C$,, \emph{Chem. Eng. Sci.}, 39 (1984), 1087. Google Scholar

[9]

A. D'Anna, P. G. Lignola and S. K. Scott, The application of singularity theory to isothermal autocatalytic open systems,, \emph{Proc. Roy. Soc. A}, 403 (1986), 341. Google Scholar

[10]

B. Peng, S. K. Scott and K. Showalter, Period doubling and chaos in a three variable autocatalator,, \emph{J. Phys. Chem.}, 94 (1990), 5243. Google Scholar

[11]

D. T. Lynch, Chaotic behavior of reactions systems: mixed cubic and quadratic autocatalysis,, \emph{Chem. Eng. Sci.}, 47 (1992), 4435. Google Scholar

[12]

K. Alhumaizi and R. Aris, Chaos in a simple two-phase reactor,, \emph{Chaos Solitons Fractals}, 4 (1994), 1985. Google Scholar

[13]

H. I. Abdel-Gawad and A. M. El-Shrae, Approximate solutions to the two-cell cubic autocatalytic reaction model,, \emph{Kyungpook Math. J.}, 44 (2004), 187. Google Scholar

[14]

E. A. Elrifai, On cubic autocatalytic chemical reaction model, CSTR and invariants of knots,, \emph{Far East J. Appl. Math.}, 32 (2008), 435. Google Scholar

[15]

J. H. Merkin, D. J. Needham and S. K. Scott, Oscillatory chemical reactions in closed vessels,, \emph{Proc. Roy. Soc. London Ser. A}, 406 (1986), 299. Google Scholar

[16]

A. B. Finlayson and J. H. Merkin, Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system,, \emph{J. Engrg. Math.}, 38 (2000), 279. doi: 10.1023/A:1004799200173. Google Scholar

[17]

L. S. Chen and D. D. Wang, A biochemical oscillation,, \emph{Acta Math. Sci. Ser. B Engl. Ed.}, 5 (1985), 261. Google Scholar

[18]

J. H. Merkin, D. J. Needham and S. K. Scott, On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme,, \emph{SIAM J. Appl. Math.}, 47 (1987), 1040. doi: 10.1137/0147068. Google Scholar

[19]

J. H. Merkin and D. J. Needham, Reaction-diffusion in a simple pooled chemical system,, \emph{Dyn. Stab. Syst.}, 4 (1989), 141. doi: 10.1080/02681118908806069. Google Scholar

[20]

D. J. Needham and J. H. Merkin, Pattern formation through reaction and diffusion in a simple pooled-chemical system,, \emph{Dyn. Stab. Syst.}, 4 (1989), 259. doi: 10.1080/02681118908806076. Google Scholar

[21]

R. Hill, J. H. Merkin and D. J. Needham, Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme,, \emph{J. Engrg. Math.}, 29 (1995), 413. doi: 10.1007/BF00043976. Google Scholar

[22]

J. Jang, W. M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model,, \emph{J. Dynam. Differential Equations}, 16 (2005), 297. doi: 10.1007/s10884-004-2782-x. Google Scholar

[23]

M. H. Wei, J. H. Wu and G. H. Guo, Turing structures and stability for the 1-D Lengyel-Epstein system,, \emph{J. Math. Chem.}, 50 (2012), 2374. doi: 10.1007/s10910-012-0037-3. Google Scholar

[24]

M. G. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalue,, \emph{J. Funct. Anal.}, 8 (1971), 321. Google Scholar

[25]

K. J. Brown, Local and global bifurcation results for a semilinear boundary value problem,, \emph{J. Differential Equations}, 239 (2007), 296. doi: 10.1016/j.jde.2007.05.013. Google Scholar

[26]

D. Schaeffer and M. Golubitsky, Bifurcation analysis near a double eigenvalue of a model chemical reaction,, \emph{Arch. Rational Mech. Anal.}, 75 (1981), 315. doi: 10.1007/BF00256382. Google Scholar

[27]

M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I,, Springer, (1985). doi: 10.1007/978-1-4612-5034-0. Google Scholar

[28]

M. Golubitsky and D. Schaeffer, Imperfect bifurcation in the presence of symmetry,, \emph{Comm. Math. Phys.}, 67 (1979), 205. Google Scholar

[29]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, \emph{J. Funct. Anal.}, 7 (1971), 487. Google Scholar

[30]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, \emph{Nonlinear Anal.}, 39 (2000), 817. doi: 10.1016/S0362-546X(98)00250-8. Google Scholar

[31]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory,, \emph{Comm. Pure Appl. Math.}, 32 (1979), 21. doi: 10.1002/cpa.3160320103. Google Scholar

[1]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[2]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[3]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[4]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[5]

Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

[6]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[7]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[8]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[9]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[10]

Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117

[11]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039

[12]

Dorothy Bollman, Omar Colón-Reyes. Determining steady state behaviour of discrete monomial dynamical systems. Advances in Mathematics of Communications, 2017, 11 (2) : 283-287. doi: 10.3934/amc.2017019

[13]

Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129

[14]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[15]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[16]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[17]

Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 239-252. doi: 10.3934/mbe.2011.8.239

[18]

Youcef Mammeri, Damien Sellier. A surface model of nonlinear, non-steady-state phloem transport. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1055-1069. doi: 10.3934/mbe.2017055

[19]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[20]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]