March  2014, 13(2): 881-901. doi: 10.3934/cpaa.2014.13.881

Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

2. 

Institut de Recherche Mathématique Avancée, Université de Strasbourg, 67084 Strasbourg

Received  June 2013 Revised  September 2013 Published  October 2013

Several kinds of exact synchronizations are introduced for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type and these synchronizations can be realized by means of some boundary controls.
Citation: Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure & Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881
References:
[1]

Long Hu, Fanqiong Ji and Ke Wang, Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations,, Chin. Ann. Math., 34B (2013), 479. doi: 10.1007/s11401-013-0785-9. Google Scholar

[2]

Tatsien Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", AIMS Series on Applied Mathematies, (2010). Google Scholar

[3]

Tatsien Li and Bopeng Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems,, Chin. Ann. Math., 31B (2010), 723. doi: 10.1007/s11401-010-0600-9. Google Scholar

[4]

Tatsien Li and Bopeng Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math., 34B (2013), 139. doi: 10.1007/s11401-012-0754-8. Google Scholar

[5]

Tatsien Li, Bopeng Rao and Long Hu, Exact boundary synchronization for a coupled system of 1-D wave equations,, To appear in ESAIM:COCV., (). Google Scholar

[6]

Tatsien Li and Lixin Yu, Exact boundary controllability for 1-D quasilinear wave equations,, SIAM J. Control. Optim, 45 (2006), 1074. doi: 10.1137/S0363012903427300. Google Scholar

[7]

J.-L. Lions, "Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués,", Vol. 1, (1988). Google Scholar

[8]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[9]

D. L. Russell, Controllability and stabilization theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095. Google Scholar

[10]

Ke Wang, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems,, Chin. Ann. Math., 32B (2011), 803. doi: 10.1007/s11401-011-0683-y. Google Scholar

[11]

Lixin Yu, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems and its applications,, Math. Meth. Appl. Sci., 33 (2010), 273. doi: 10.1002/mma.1167. Google Scholar

show all references

References:
[1]

Long Hu, Fanqiong Ji and Ke Wang, Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations,, Chin. Ann. Math., 34B (2013), 479. doi: 10.1007/s11401-013-0785-9. Google Scholar

[2]

Tatsien Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", AIMS Series on Applied Mathematies, (2010). Google Scholar

[3]

Tatsien Li and Bopeng Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems,, Chin. Ann. Math., 31B (2010), 723. doi: 10.1007/s11401-010-0600-9. Google Scholar

[4]

Tatsien Li and Bopeng Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math., 34B (2013), 139. doi: 10.1007/s11401-012-0754-8. Google Scholar

[5]

Tatsien Li, Bopeng Rao and Long Hu, Exact boundary synchronization for a coupled system of 1-D wave equations,, To appear in ESAIM:COCV., (). Google Scholar

[6]

Tatsien Li and Lixin Yu, Exact boundary controllability for 1-D quasilinear wave equations,, SIAM J. Control. Optim, 45 (2006), 1074. doi: 10.1137/S0363012903427300. Google Scholar

[7]

J.-L. Lions, "Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués,", Vol. 1, (1988). Google Scholar

[8]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[9]

D. L. Russell, Controllability and stabilization theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095. Google Scholar

[10]

Ke Wang, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems,, Chin. Ann. Math., 32B (2011), 803. doi: 10.1007/s11401-011-0683-y. Google Scholar

[11]

Lixin Yu, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems and its applications,, Math. Meth. Appl. Sci., 33 (2010), 273. doi: 10.1002/mma.1167. Google Scholar

[1]

Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893

[2]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

[3]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

[4]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[5]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[6]

Scott W. Hansen, Oleg Yu Imanuvilov. Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions. Mathematical Control & Related Fields, 2011, 1 (2) : 189-230. doi: 10.3934/mcrf.2011.1.189

[7]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[8]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[9]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[10]

Abdelaziz Bennour, Farid Ammar Khodja, Djamel Teniou. Exact and approximate controllability of coupled one-dimensional hyperbolic equations. Evolution Equations & Control Theory, 2017, 6 (4) : 487-516. doi: 10.3934/eect.2017025

[11]

Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations & Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030

[12]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[13]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[14]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405

[15]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[16]

Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59

[17]

Tatsien Li, Zhiqiang Wang. A note on the exact controllability for nonautonomous hyperbolic systems. Communications on Pure & Applied Analysis, 2007, 6 (1) : 229-235. doi: 10.3934/cpaa.2007.6.229

[18]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks & Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

[19]

José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019039

[20]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]