March  2014, 13(2): 543-566. doi: 10.3934/cpaa.2014.13.543

Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation

1. 

School of Science, Nanjing University of Science and Technology, Nanjing, 210094, China, China

Received  October 2012 Revised  July 2013 Published  October 2013

We consider a fourth order degenerate equation describing thin films over an inclined plane in this paper. A new approximating problem is introduced in order to obtain the local energy estimate of the solution. Based on combined use of local entropy estimate, local energy estimate and the suitable extensions of Stampacchia's Lemma to systems, we obtain the finite speed of propagation property of strong solutions, which has been known for the case of strong slippage $ n<2, $ in the case of weak slippage $ 2 \leq n < 3. $ The long time behavior of positive classical solutions is also discussed. We apply the entropy dissipation method to quantify the explicit rate of convergence in the $ L^\infty $ norm of the solution, and this improves and extends the previous results.
Citation: Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543
References:
[1]

L. Ansini and L. Giacomelli, Doubly nonlinear thin-film equations in one space dimension,, Arch. Rational Mech. Anal., 173 (2004), 89. doi: 10.1007/s00205-004-0313-x. Google Scholar

[2]

F. Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows,, Adv. Differential Equations, 1 (1996), 337. Google Scholar

[3]

F. Bernis, Finite speed of propagation for thin viscous flows when $ 2 \le n < 3 $,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 1169. Google Scholar

[4]

F. Bernis and A. Friedman, Higher-order nonlinear degenerate parabolic equations,, J. Diff. Equations, 83 (1990), 179. doi: 10.1016/0022-0396(90)90074-Y. Google Scholar

[5]

F. Bernis, L. A. Peletier and S. M. Williams, Source type solutions of a fourth order nonlinear degenerate parabolic equation,, Nonlinear Anal., 18 (1992), 217. doi: 10.1016/0362-546X(92)90060-R. Google Scholar

[6]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a porous media cutoff of the van der Waals interactions,, Nonlinearity, 7 (1994), 1535. Google Scholar

[7]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for viscous films: regularity and long time behavior of weak solutions,, Comm. Pure Appl. Math., 49 (1996), 85. doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.3.CO;2-V. Google Scholar

[8]

A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations,, Comm. Pure Appl. Math., 51 (1998), 625. doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.3.CO;2-2. Google Scholar

[9]

M. Bertsch, R. Dal Passo, H. Garcke and G. Grün, The thin viscous flow equation in higher space dimensions,, Adv Differ. Equ., 3 (1998), 417. Google Scholar

[10]

E. Bertta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,, Arch. Ration. Mech. Anal., 129 (1995), 175. Google Scholar

[11]

M. Boutat, S. Hilout, J. E. Rakotoson and J. M. Rakotoson, A generalized thin-film equation in multidimensional space,, Nonlinear Analysis, 69 (2008), 1268. doi: 10.1016/j.na.2007.06.028. Google Scholar

[12]

M. Boutat, S. Hilout, J. E. Rakotoson, J. M. Rakotoson, The generalized thin film equation with periodic-domain conditions,, Applied Mathematics Letters, 21 (2008), 101. doi: 10.1016/j.aml.2007.02.014. Google Scholar

[13]

E. A. Carlen and S. Ulusory, An entropy dissipation-entropy estimate for a thin film type equation,, Comm. Math. Sci., 3 (2005), 171. Google Scholar

[14]

J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1. doi: 10.1007/s006050170032. Google Scholar

[15]

J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation,, Commun. Math. Phys., 225 (2002), 551. doi: 10.1007/s002200100591. Google Scholar

[16]

M. Chugunova, M. Pugh and R. Taranets, Research announcement: Finite-time blow up and long-wave unstable thin film equations,, preprint, (). Google Scholar

[17]

R. Dal Passo, H. Garcke and G. Grün, On a fourth order degenerate parabolic equation: global entropy estimates, existence, and qualitative behaviour of solutions,, SIAM J. Math. Anal., 29 (1998), 321. Google Scholar

[18]

R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomenon for thin film equations,, Ann. Scuola Norm. Sup. Pisa, 30 (2001), 437. Google Scholar

[19]

R. Dal Passo, L. Giacomelli and A. Shishkov, The thin film equation with nonlinear diffusion,, Comm. Partial Differential Equations, 26 (2001), 1509. Google Scholar

[20]

S. D. Èĭdel'man, Parabolic Systems,, Translated from the Russian by Scripta Technica, (1969). Google Scholar

[21]

A. Friedman, Partial Differential Equations,, Holt, (). Google Scholar

[22]

L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane,, Applied Mathematics Letters, 12 (1999), 107. doi: 10.1016/S0893-9659(99)00130-5. Google Scholar

[23]

L. Giacomelli and A. Shishkov, Propagation of support in one-dimensional convected thin-film flow,, Indiana Univ. Math. J., 54 (2005), 1181. doi: 10.1512/iumj.2005.54.2532. Google Scholar

[24]

G. Grün, Degenerate parabolic differential equations of fourth order and a plasticity model with nonlocal harding,, Z. Anal. Anwendungen., 14 (1995), 541. Google Scholar

[25]

G. Grün, "On Free Boundary Problems Arising in Thin Film Flow,", Habilitation thesis, (2001). Google Scholar

[26]

G. Grün, Droplet spreading under weak slippage: the waiting time phenomenon,, Ann. I. H. Poincaré–AN, 21 (2004), 255. doi: 10.1016/j.ahihpc.2003.02.002. Google Scholar

[27]

L. M. Hocking, Spreading and instability of a viscous fluid sheet,, Journal of Fluid Mechanics, 211 (1990), 373. doi: 10.1017/S0022112090001616. Google Scholar

[28]

J. R. King, Two generalisations of the thin film equation,, Math. Comput. Modelling, 34 (2001), 737. doi: 10.1016/S0895-7177(01)00095-4. Google Scholar

[29]

J. J. Li, On a fourth order degenerate parabolic equation in higher space dimensions,, Journal of Mathematical Physics, 50 (2009). doi: 10.1063/1.3272788. Google Scholar

[30]

X. Liu and C. Qu, Finite speed of propagation for thin viscous flows over an inclined plane,, Nonlinear Anal. Real World Appl., 13 (2012), 464. doi: 10.1016/j.nonrwa.2011.08.003. Google Scholar

[31]

E. Momoniata, T. G. Myers and S. Abelman, Similarity solutions of thin film flow driven by gravity and surface shear,, Nonlinear Analysis: Real World Applications, 10 (2009), 3443. doi: 10.1016/j.nonrwa.2008.10.070. Google Scholar

[32]

A. Oron, S. H, Davis and S. G. Bankoff, Long-scale evolution of thin liquid films,, Rev. Modern Phys., 69 (1997), 931. doi: 10.1103/RevModPhys.69.931. Google Scholar

[33]

E. O. Tuck and L. W. Schwaxtz, Thin static drops with a free attachment boundary,, Journal of Fluid Mechanics, 223 (1991), 313. Google Scholar

[34]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71. Google Scholar

show all references

References:
[1]

L. Ansini and L. Giacomelli, Doubly nonlinear thin-film equations in one space dimension,, Arch. Rational Mech. Anal., 173 (2004), 89. doi: 10.1007/s00205-004-0313-x. Google Scholar

[2]

F. Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows,, Adv. Differential Equations, 1 (1996), 337. Google Scholar

[3]

F. Bernis, Finite speed of propagation for thin viscous flows when $ 2 \le n < 3 $,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 1169. Google Scholar

[4]

F. Bernis and A. Friedman, Higher-order nonlinear degenerate parabolic equations,, J. Diff. Equations, 83 (1990), 179. doi: 10.1016/0022-0396(90)90074-Y. Google Scholar

[5]

F. Bernis, L. A. Peletier and S. M. Williams, Source type solutions of a fourth order nonlinear degenerate parabolic equation,, Nonlinear Anal., 18 (1992), 217. doi: 10.1016/0362-546X(92)90060-R. Google Scholar

[6]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a porous media cutoff of the van der Waals interactions,, Nonlinearity, 7 (1994), 1535. Google Scholar

[7]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for viscous films: regularity and long time behavior of weak solutions,, Comm. Pure Appl. Math., 49 (1996), 85. doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.3.CO;2-V. Google Scholar

[8]

A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations,, Comm. Pure Appl. Math., 51 (1998), 625. doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.3.CO;2-2. Google Scholar

[9]

M. Bertsch, R. Dal Passo, H. Garcke and G. Grün, The thin viscous flow equation in higher space dimensions,, Adv Differ. Equ., 3 (1998), 417. Google Scholar

[10]

E. Bertta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,, Arch. Ration. Mech. Anal., 129 (1995), 175. Google Scholar

[11]

M. Boutat, S. Hilout, J. E. Rakotoson and J. M. Rakotoson, A generalized thin-film equation in multidimensional space,, Nonlinear Analysis, 69 (2008), 1268. doi: 10.1016/j.na.2007.06.028. Google Scholar

[12]

M. Boutat, S. Hilout, J. E. Rakotoson, J. M. Rakotoson, The generalized thin film equation with periodic-domain conditions,, Applied Mathematics Letters, 21 (2008), 101. doi: 10.1016/j.aml.2007.02.014. Google Scholar

[13]

E. A. Carlen and S. Ulusory, An entropy dissipation-entropy estimate for a thin film type equation,, Comm. Math. Sci., 3 (2005), 171. Google Scholar

[14]

J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1. doi: 10.1007/s006050170032. Google Scholar

[15]

J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation,, Commun. Math. Phys., 225 (2002), 551. doi: 10.1007/s002200100591. Google Scholar

[16]

M. Chugunova, M. Pugh and R. Taranets, Research announcement: Finite-time blow up and long-wave unstable thin film equations,, preprint, (). Google Scholar

[17]

R. Dal Passo, H. Garcke and G. Grün, On a fourth order degenerate parabolic equation: global entropy estimates, existence, and qualitative behaviour of solutions,, SIAM J. Math. Anal., 29 (1998), 321. Google Scholar

[18]

R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomenon for thin film equations,, Ann. Scuola Norm. Sup. Pisa, 30 (2001), 437. Google Scholar

[19]

R. Dal Passo, L. Giacomelli and A. Shishkov, The thin film equation with nonlinear diffusion,, Comm. Partial Differential Equations, 26 (2001), 1509. Google Scholar

[20]

S. D. Èĭdel'man, Parabolic Systems,, Translated from the Russian by Scripta Technica, (1969). Google Scholar

[21]

A. Friedman, Partial Differential Equations,, Holt, (). Google Scholar

[22]

L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane,, Applied Mathematics Letters, 12 (1999), 107. doi: 10.1016/S0893-9659(99)00130-5. Google Scholar

[23]

L. Giacomelli and A. Shishkov, Propagation of support in one-dimensional convected thin-film flow,, Indiana Univ. Math. J., 54 (2005), 1181. doi: 10.1512/iumj.2005.54.2532. Google Scholar

[24]

G. Grün, Degenerate parabolic differential equations of fourth order and a plasticity model with nonlocal harding,, Z. Anal. Anwendungen., 14 (1995), 541. Google Scholar

[25]

G. Grün, "On Free Boundary Problems Arising in Thin Film Flow,", Habilitation thesis, (2001). Google Scholar

[26]

G. Grün, Droplet spreading under weak slippage: the waiting time phenomenon,, Ann. I. H. Poincaré–AN, 21 (2004), 255. doi: 10.1016/j.ahihpc.2003.02.002. Google Scholar

[27]

L. M. Hocking, Spreading and instability of a viscous fluid sheet,, Journal of Fluid Mechanics, 211 (1990), 373. doi: 10.1017/S0022112090001616. Google Scholar

[28]

J. R. King, Two generalisations of the thin film equation,, Math. Comput. Modelling, 34 (2001), 737. doi: 10.1016/S0895-7177(01)00095-4. Google Scholar

[29]

J. J. Li, On a fourth order degenerate parabolic equation in higher space dimensions,, Journal of Mathematical Physics, 50 (2009). doi: 10.1063/1.3272788. Google Scholar

[30]

X. Liu and C. Qu, Finite speed of propagation for thin viscous flows over an inclined plane,, Nonlinear Anal. Real World Appl., 13 (2012), 464. doi: 10.1016/j.nonrwa.2011.08.003. Google Scholar

[31]

E. Momoniata, T. G. Myers and S. Abelman, Similarity solutions of thin film flow driven by gravity and surface shear,, Nonlinear Analysis: Real World Applications, 10 (2009), 3443. doi: 10.1016/j.nonrwa.2008.10.070. Google Scholar

[32]

A. Oron, S. H, Davis and S. G. Bankoff, Long-scale evolution of thin liquid films,, Rev. Modern Phys., 69 (1997), 931. doi: 10.1103/RevModPhys.69.931. Google Scholar

[33]

E. O. Tuck and L. W. Schwaxtz, Thin static drops with a free attachment boundary,, Journal of Fluid Mechanics, 223 (1991), 313. Google Scholar

[34]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002), 71. Google Scholar

[1]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[2]

S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305

[3]

Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465

[4]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[5]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[6]

Marina Chugunova, Roman M. Taranets. New dissipated energy for the unstable thin film equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 613-624. doi: 10.3934/cpaa.2011.10.613

[7]

Richard S. Laugesen. New dissipated energies for the thin fluid film equation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 613-634. doi: 10.3934/cpaa.2005.4.613

[8]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[9]

Antoine Benoit. Finite speed of propagation for mixed problems in the $WR$ class. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2351-2358. doi: 10.3934/cpaa.2014.13.2351

[10]

Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049

[11]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[12]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

[13]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[14]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[15]

Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure & Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803

[16]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[17]

Andrey Shishkov. Waiting time of propagation and the backward motion of interfaces in thin-film flow theory. Conference Publications, 2007, 2007 (Special) : 938-945. doi: 10.3934/proc.2007.2007.938

[18]

Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks & Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137

[19]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[20]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]