• Previous Article
    The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space
  • CPAA Home
  • This Issue
  • Next Article
    Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis
January  2014, 13(1): 331-346. doi: 10.3934/cpaa.2014.13.331

Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations

1. 

Instituto de Matemáticas, Universidad Nacional Autónoma de México, México DF 04510, Mexico, Mexico

Received  January 2013 Revised  May 2013 Published  July 2013

Extending previuos results ([16, 1, 7]), we study the vanishing viscosity limit of solutions of space-time periodic Hamilton-Jacobi-Belllman equations, assuming that the ``Aubry set'' is the union of a finite number of hyperbolic periodic orbits of the Hamiltonian flow.
Citation: Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331
References:
[1]

N. Anantharaman, R. Iturriaga, P. Padilla and H. Sánchez-Morgado, Physical solutions of the Hamilton-Jacobi equation,, Disc. Cont. Dyn. Sys. Series B, 5 (2005), 513. doi: 10.3934/dcdsb.2005.5.513.

[2]

M. Bardi, I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,'', Birkhausser, (1997).

[3]

G. Barles, "Solutions de viscosité des équations de Hamilton Jacobi,'' Mathématiques et Applications 17,, Springer-Verlag, (1994).

[4]

G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, SIAM J. Math. Anal., 32 (2001), 1311. doi: 10.1137/S0036141000369344.

[5]

P. Bernard, Smooth critical subsolutions of the Hamilton-Jacobi equation,, Math. Res. Lett., 14 (2007), 503.

[6]

P. Bernard, Connecting orbits of time dependent Lagrangian systems,, Ann. Inst. Fourier, 52 (2002), 1533. doi: 10.5802/aif.1924.

[7]

U. Bessi, Aubry-Mather theory and Hamilton-Jacobi equations,, Comm. Math. Phys., 235 (2003), 495. doi: 10.1007/s00220-002-0781-5.

[8]

G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points,, Erg. Th. Dynam. Sys., 19 (1999), 901. doi: 10.1017/S014338579913387X.

[9]

G. Contreras, R. Iturriaga and H. Sánchez-Morgado, Weak solutions of the Hamilton Jacobi equation for Time Periodic Lagrangians,, \href{http://www.matem.unam.mx/hector/wham.pdf} {Preprint.}, ().

[10]

M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487. doi: 10.1090/S0002-9947-1984-0732102-X.

[11]

L. C. Evans, "Partial Differential Equations,'', Graduate Studies in Mathematics \textbf{19}, 19 (1997).

[12]

A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics,'', To appear in Cambridge Studies in Advanced Mathematics., ().

[13]

A. Fathi, On existence of smooth critical subsolutions of the Hamilton-Jacobi equation,, Pub. Mat. Uruguay, 12 (2011), 87.

[14]

W. Fleming and M. Soner, "Controlled Markov Processes and Viscosity Solutions,'', Springer 1993., (1993).

[15]

M. I. Freidlin and A. D. Wentzell, "Random Perturbations of Dynamical Systems,'', Springer 1998., (1998).

[16]

H. R. Jauslin, H. O. Kreiss and J. Moser, On the forced Burgers equation with periodic boundary conditions, "Differential Equations, La Pietra,'', Proc. of Symp. Pure Math., 65 (1996), 133.

[17]

D. Massart, Subsolution of time-periodic Hamilton-Jacobi equations,, Erg. Th. Dynam. Sys., 27 (2007), 1253. doi: 10.1017/S0143385707000089.

[18]

T. Rockafellar, "Convex Analysis,'', Princeton University Press, (1972).

show all references

References:
[1]

N. Anantharaman, R. Iturriaga, P. Padilla and H. Sánchez-Morgado, Physical solutions of the Hamilton-Jacobi equation,, Disc. Cont. Dyn. Sys. Series B, 5 (2005), 513. doi: 10.3934/dcdsb.2005.5.513.

[2]

M. Bardi, I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,'', Birkhausser, (1997).

[3]

G. Barles, "Solutions de viscosité des équations de Hamilton Jacobi,'' Mathématiques et Applications 17,, Springer-Verlag, (1994).

[4]

G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, SIAM J. Math. Anal., 32 (2001), 1311. doi: 10.1137/S0036141000369344.

[5]

P. Bernard, Smooth critical subsolutions of the Hamilton-Jacobi equation,, Math. Res. Lett., 14 (2007), 503.

[6]

P. Bernard, Connecting orbits of time dependent Lagrangian systems,, Ann. Inst. Fourier, 52 (2002), 1533. doi: 10.5802/aif.1924.

[7]

U. Bessi, Aubry-Mather theory and Hamilton-Jacobi equations,, Comm. Math. Phys., 235 (2003), 495. doi: 10.1007/s00220-002-0781-5.

[8]

G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points,, Erg. Th. Dynam. Sys., 19 (1999), 901. doi: 10.1017/S014338579913387X.

[9]

G. Contreras, R. Iturriaga and H. Sánchez-Morgado, Weak solutions of the Hamilton Jacobi equation for Time Periodic Lagrangians,, \href{http://www.matem.unam.mx/hector/wham.pdf} {Preprint.}, ().

[10]

M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487. doi: 10.1090/S0002-9947-1984-0732102-X.

[11]

L. C. Evans, "Partial Differential Equations,'', Graduate Studies in Mathematics \textbf{19}, 19 (1997).

[12]

A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics,'', To appear in Cambridge Studies in Advanced Mathematics., ().

[13]

A. Fathi, On existence of smooth critical subsolutions of the Hamilton-Jacobi equation,, Pub. Mat. Uruguay, 12 (2011), 87.

[14]

W. Fleming and M. Soner, "Controlled Markov Processes and Viscosity Solutions,'', Springer 1993., (1993).

[15]

M. I. Freidlin and A. D. Wentzell, "Random Perturbations of Dynamical Systems,'', Springer 1998., (1998).

[16]

H. R. Jauslin, H. O. Kreiss and J. Moser, On the forced Burgers equation with periodic boundary conditions, "Differential Equations, La Pietra,'', Proc. of Symp. Pure Math., 65 (1996), 133.

[17]

D. Massart, Subsolution of time-periodic Hamilton-Jacobi equations,, Erg. Th. Dynam. Sys., 27 (2007), 1253. doi: 10.1017/S0143385707000089.

[18]

T. Rockafellar, "Convex Analysis,'', Princeton University Press, (1972).

[1]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[2]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[3]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[4]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[5]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[6]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[7]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[8]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[9]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[10]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[11]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

[12]

Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917

[13]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[14]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

[15]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[16]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[17]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[18]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[19]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[20]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]