November  2014, 13(6): 2641-2673. doi: 10.3934/cpaa.2014.13.2641

Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations

1. 

Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium

2. 

Hasselt University, Campus Diepenbeek, Agoralaan-Gebouw D, B-3590 Diepenbeek, Belgium

3. 

Universiteit Hasselt, Campus Diepenbeek, Agoralaan–gebouw D, 3590 Diepenbeek

Received  October 2013 Revised  April 2014 Published  July 2014

In this paper we continue the study of ``large" small-amplitude limit cycles in slow-fast codimension 3 elliptic bifurcations which is initiated in [8]. Our treatment is based on blow-up and good normal forms.
Citation: Renato Huzak, P. De Maesschalck, Freddy Dumortier. Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2641-2673. doi: 10.3934/cpaa.2014.13.2641
References:
[1]

P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations,, \emph{J. Differential Equations}, 250 (2011), 1000. doi: 10.1016/j.jde.2010.07.022. Google Scholar

[2]

F. Dumortier and R. Roussarie, Birth of canard cycles,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 2 (2009), 723. doi: 10.3934/dcdss.2009.2.723. Google Scholar

[3]

P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point,, \emph{J. Differential Equations}, 248 (2010), 2294. doi: 10.1016/j.jde.2009.11.009. Google Scholar

[4]

P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 138 (2008), 265. doi: 10.1017/S0308210506000199. Google Scholar

[5]

F. Dumortier, R. Roussarie, J. Sotomayor, and H. Zoladek, Bifurcations of Planar Vector Fields,, Lecture Notes in Mathematics, 1480 (1991). Google Scholar

[6]

Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, \emph{J. Differential Equations}, 224 (2006), 296. doi: 10.1016/j.jde.2005.08.011. Google Scholar

[7]

Robert Roussarie, Putting a boundary to the space of Liénard equations,, \emph{Discrete Contin. Dyn. Syst.}, 17 (2007), 441. doi: 10.3934/dcds.2007.17.441. Google Scholar

[8]

R. Huzak, P. De Maesschalck and F. Dumortier, Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations,, \emph{J. Differential Equations}, 255 (2013), 4012. doi: 10.1016/j.jde.2013.07.057. Google Scholar

[9]

Peter De Maesschalck and Freddy Dumortier, Detectable canard cycles with singular slow dynamics of any order at the turning point,, \emph{Discrete Contin. Dyn. Syst.}, 29 (2011), 109. doi: 10.3934/dcds.2011.29.109. Google Scholar

[10]

P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points,, \emph{J. Differential Equations}, 215 (2005), 225. doi: 10.1016/j.jde.2005.01.004. Google Scholar

[11]

P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems,, \emph{J. Dynam. Differential Equations}, 23 (2011), 115. doi: 10.1007/s10884-010-9191-0. Google Scholar

[12]

M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion,, \emph{J. Differential Equations}, 174 (2001), 312. doi: 10.1006/jdeq.2000.3929. Google Scholar

[13]

Daniel Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields,, \emph{Mem. Amer. Math. Soc.}, 158 (2002). doi: 10.1090/memo/0753. Google Scholar

[14]

J. Llibre, A survey on the limit cycles of the generalized polynomial Liénard differential equations,, \emph{Mathematical models in engineering, 1124 (2009), 224. Google Scholar

show all references

References:
[1]

P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations,, \emph{J. Differential Equations}, 250 (2011), 1000. doi: 10.1016/j.jde.2010.07.022. Google Scholar

[2]

F. Dumortier and R. Roussarie, Birth of canard cycles,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 2 (2009), 723. doi: 10.3934/dcdss.2009.2.723. Google Scholar

[3]

P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point,, \emph{J. Differential Equations}, 248 (2010), 2294. doi: 10.1016/j.jde.2009.11.009. Google Scholar

[4]

P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 138 (2008), 265. doi: 10.1017/S0308210506000199. Google Scholar

[5]

F. Dumortier, R. Roussarie, J. Sotomayor, and H. Zoladek, Bifurcations of Planar Vector Fields,, Lecture Notes in Mathematics, 1480 (1991). Google Scholar

[6]

Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, \emph{J. Differential Equations}, 224 (2006), 296. doi: 10.1016/j.jde.2005.08.011. Google Scholar

[7]

Robert Roussarie, Putting a boundary to the space of Liénard equations,, \emph{Discrete Contin. Dyn. Syst.}, 17 (2007), 441. doi: 10.3934/dcds.2007.17.441. Google Scholar

[8]

R. Huzak, P. De Maesschalck and F. Dumortier, Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations,, \emph{J. Differential Equations}, 255 (2013), 4012. doi: 10.1016/j.jde.2013.07.057. Google Scholar

[9]

Peter De Maesschalck and Freddy Dumortier, Detectable canard cycles with singular slow dynamics of any order at the turning point,, \emph{Discrete Contin. Dyn. Syst.}, 29 (2011), 109. doi: 10.3934/dcds.2011.29.109. Google Scholar

[10]

P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points,, \emph{J. Differential Equations}, 215 (2005), 225. doi: 10.1016/j.jde.2005.01.004. Google Scholar

[11]

P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems,, \emph{J. Dynam. Differential Equations}, 23 (2011), 115. doi: 10.1007/s10884-010-9191-0. Google Scholar

[12]

M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion,, \emph{J. Differential Equations}, 174 (2001), 312. doi: 10.1006/jdeq.2000.3929. Google Scholar

[13]

Daniel Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields,, \emph{Mem. Amer. Math. Soc.}, 158 (2002). doi: 10.1090/memo/0753. Google Scholar

[14]

J. Llibre, A survey on the limit cycles of the generalized polynomial Liénard differential equations,, \emph{Mathematical models in engineering, 1124 (2009), 224. Google Scholar

[1]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[2]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[3]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[4]

Philippe Souplet, Juan-Luis Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 221-234. doi: 10.3934/dcds.2006.14.221

[5]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[6]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[7]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[8]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[9]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[10]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[11]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[12]

W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655

[13]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[14]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[15]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[16]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[17]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[18]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[19]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[20]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

[Back to Top]