• Previous Article
    Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials
  • CPAA Home
  • This Issue
  • Next Article
    Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity
January  2014, 13(1): 249-272. doi: 10.3934/cpaa.2014.13.249

Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method

1. 

Department of Mathematics, South-Central University for Nationalities, Wuhan 430074, China

Received  December 2012 Revised  June 2013 Published  July 2013

In this paper, we study the homogenization and corrector results for the hyperbolic problem in a two-component composite with $\varepsilon$-periodic connected inclusions. The condition prescribed on the interface is that a jump of the solution is proportional to the conormal derivatives via a function of order $\varepsilon^\gamma$ ($\gamma < -1$). The main ingredient of the proof of our main theorems is the time-dependent periodic unfolding method in two-component domains. Our homogenization results recover those of the corresponding case in [Donato, Faella and Monsurrò, J. Math. Pures Appl. 87 (2007), pp. 119-143]. We also derive the corresponding corrector results.
Citation: Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249
References:
[1]

S. Brahim-Otsman, G. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations,, J. Math. Pures Appl., 71 (1992), 197. Google Scholar

[2]

D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes,, SIAM J. Math. Anal., 44 (2002), 718. doi: 10.1137/100817942. Google Scholar

[3]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization,, SIAM J. Math. Anal., 40 (2008), 1585. doi: 10.1137/080713148. Google Scholar

[4]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,", Oxford Univ. Press, (1999). Google Scholar

[5]

H. Carslaw and J. Jaeger, "Conduction of Heat in Solids,", Clarendon Press, (1947). Google Scholar

[6]

P. Donato, Some corrector results for composites with imperfect interface,, Rend. Mat. Appl., 26 (2006), 189. Google Scholar

[7]

P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: A memory effect,, J. Math. Pures Appl., 87 (2007), 119. doi: 10.1016/j.matpur.2006.11.004. Google Scholar

[8]

P. Donato, L. Faella and S. Monsurrò, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces,, SIAM J. Math. Anal., 40 (2009), 1952. doi: 10.1137/080712684. Google Scholar

[9]

P. Donato and E. Jose, Corrector results for a parabolic problem with a memory effect,, ESAIM: Mathematical Modelling and Numerical Analysis, 44 (2010), 421. doi: 10.1051/m2an/2010008. Google Scholar

[10]

P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance,, Analysis and Applications, 2 (2004), 247. doi: 10.1142/S0219530504000345. Google Scholar

[11]

P. Donato, K. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems,, J. Math. Sci., 176 (2011), 891. Google Scholar

[12]

P. Donato and Z. Yang, The periodic unfolding method for the wave equation in domains with holes,, Advances in Mathematical Sciences and Applications, 22 (2012), 521. Google Scholar

[13]

E. Jose, Homogenization of a parabolic problem with an imperfect interface,, Rev. Rouma. Math. Pures Appl., 54 (2009), 189. Google Scholar

[14]

S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier,, Adv. Math. Sci. Appl., 13 (2003), 43. Google Scholar

[15]

S. Monsurrò, Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier,, Adv. Math. Sci. Appl., 14 (2004), 375. Google Scholar

[16]

A. Nabil, A corrector result for the wave equations in perforated domains,, Gakuto Internat. Ser., 9 (1997), 309. Google Scholar

[17]

L. Tartar, Quelques remarques sur l'homogénéisation,, in, (1976), 468. Google Scholar

[18]

Z. Yang, The periodic unfolding method for a class of parabolic problems with imperfect interfaces,, Submitted., (). Google Scholar

show all references

References:
[1]

S. Brahim-Otsman, G. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations,, J. Math. Pures Appl., 71 (1992), 197. Google Scholar

[2]

D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes,, SIAM J. Math. Anal., 44 (2002), 718. doi: 10.1137/100817942. Google Scholar

[3]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization,, SIAM J. Math. Anal., 40 (2008), 1585. doi: 10.1137/080713148. Google Scholar

[4]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,", Oxford Univ. Press, (1999). Google Scholar

[5]

H. Carslaw and J. Jaeger, "Conduction of Heat in Solids,", Clarendon Press, (1947). Google Scholar

[6]

P. Donato, Some corrector results for composites with imperfect interface,, Rend. Mat. Appl., 26 (2006), 189. Google Scholar

[7]

P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: A memory effect,, J. Math. Pures Appl., 87 (2007), 119. doi: 10.1016/j.matpur.2006.11.004. Google Scholar

[8]

P. Donato, L. Faella and S. Monsurrò, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces,, SIAM J. Math. Anal., 40 (2009), 1952. doi: 10.1137/080712684. Google Scholar

[9]

P. Donato and E. Jose, Corrector results for a parabolic problem with a memory effect,, ESAIM: Mathematical Modelling and Numerical Analysis, 44 (2010), 421. doi: 10.1051/m2an/2010008. Google Scholar

[10]

P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance,, Analysis and Applications, 2 (2004), 247. doi: 10.1142/S0219530504000345. Google Scholar

[11]

P. Donato, K. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems,, J. Math. Sci., 176 (2011), 891. Google Scholar

[12]

P. Donato and Z. Yang, The periodic unfolding method for the wave equation in domains with holes,, Advances in Mathematical Sciences and Applications, 22 (2012), 521. Google Scholar

[13]

E. Jose, Homogenization of a parabolic problem with an imperfect interface,, Rev. Rouma. Math. Pures Appl., 54 (2009), 189. Google Scholar

[14]

S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier,, Adv. Math. Sci. Appl., 13 (2003), 43. Google Scholar

[15]

S. Monsurrò, Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier,, Adv. Math. Sci. Appl., 14 (2004), 375. Google Scholar

[16]

A. Nabil, A corrector result for the wave equations in perforated domains,, Gakuto Internat. Ser., 9 (1997), 309. Google Scholar

[17]

L. Tartar, Quelques remarques sur l'homogénéisation,, in, (1976), 468. Google Scholar

[18]

Z. Yang, The periodic unfolding method for a class of parabolic problems with imperfect interfaces,, Submitted., (). Google Scholar

[1]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[2]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[3]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[4]

Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations & Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016

[5]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[6]

Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations & Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011

[7]

Ben Schweizer, Marco Veneroni. The needle problem approach to non-periodic homogenization. Networks & Heterogeneous Media, 2011, 6 (4) : 755-781. doi: 10.3934/nhm.2011.6.755

[8]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[9]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[10]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[11]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks & Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

[12]

Antonin Chambolle, Gilles Thouroude. Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks & Heterogeneous Media, 2009, 4 (1) : 127-152. doi: 10.3934/nhm.2009.4.127

[13]

Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859

[14]

Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 1-30. doi: 10.3934/dcds.2003.9.1

[15]

Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks & Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543

[16]

Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323

[17]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[18]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[19]

Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

[20]

Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks & Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]