• Previous Article
    Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method
  • CPAA Home
  • This Issue
  • Next Article
    The existence and blow-up criterion of liquid crystals system in critical Besov space
January  2014, 13(1): 237-248. doi: 10.3934/cpaa.2014.13.237

Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials

1. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875

Received  October 2012 Revised  May 2013 Published  July 2013

In this paper, we consider the following semilinear Schrödinger equations with ciritical growth \begin{eqnarray} -\Delta u+(\lambda a(x)-\delta)u=|u|^{2^*-2}u,x\in R^N, \end{eqnarray} where $N\geq 4$, $a(x)\geq 0$ and its zero sets are not empty. $2^*$ is the critical Sobolev exponent. $\delta>0$ is a constant such that the operator $-\Delta +\lambda a(x)-\delta$ might be indefinite but is non-degenerate. We prove the existence of least energy solutions which localize near the potential well $int \{a^{-1}(0)\}$ for $\lambda$ large enough.
Citation: Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure & Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237
References:
[1]

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, Arch. Ration. Mech. Anal., 140 (1997), 285. doi: 10.1007/s002050050067. Google Scholar

[2]

A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, Arch. Ration. Mech. Anal., 159 (2001), 253. doi: 10.1007/s002050100152. Google Scholar

[3]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential,, Discrete Continuous Dynam. Systems, 33 (2013), 7. Google Scholar

[4]

T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation,, Z. angew. Math. Phys., 51 (2000), 266. doi: 10.1007/s000330050003. Google Scholar

[5]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}$ in $R^N$,, J. Funct. Anal., 88 (1990), 90. doi: 10.1016/0022-1236(90)90120-A. Google Scholar

[6]

J. Byeon and Z. Q. Wang, Standing waves with a ciritical frequency for nonlinear Schrödinger equations II,, Calc.Var., 18 (2003), 207. doi: 10.1007/s00526-002-0191-8. Google Scholar

[7]

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann. Inst. Henri Poincaré, 2 (1985), 463. Google Scholar

[8]

J. Chabrowski and J. Yang, Multiple semilclassical solutions of the Schrödinger equation involving a critical Sobolev exponent,, Portugaliae Mathematica, 57 (2000), 273. Google Scholar

[9]

J. Chabrowski and J. Yang, Existence theorems for the Schrödinger equation involving a critical Sobolev exponent,, Z. angew. Math. Phys., 49 (1998), 276. doi: 10.1007/PL00001485. Google Scholar

[10]

S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions,, J. Diff. Equat., 160 (2000), 118. doi: 10.1006/jdeq.1999.3662. Google Scholar

[11]

S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations,, Proc. Royal Soc. Edinburgh, 128 (1998), 1249. doi: 10.1017/S030821050002730X. Google Scholar

[12]

M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations,, Ann. Inst. Henri Poincar$\acutee$, 15 (1998), 127. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar

[13]

M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245. doi: 10.1006/jfan.1996.3085. Google Scholar

[14]

Y. Ding and J. Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials,, J. Funct. Anal., 251 (2007), 546. doi: 10.1016/j.jfa.2007.07.005. Google Scholar

[15]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0. Google Scholar

[16]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method,, Comm. Part. Diff. Equat., 21 (1996), 787. doi: 10.1080/03605309608821208. Google Scholar

[17]

Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential,, Comm. Math. Phys., 131 (1990), 223. Google Scholar

[18]

Y.-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_a$,, Comm. Part. Diff. Equat., 13 (1988), 1499. doi: 10.1080/03605308808820585. Google Scholar

[19]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals,, Milan J.Math., 73 (2005), 563. doi: 10.1007/s00032-005-0047-8. Google Scholar

[20]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, vol IV,", Academic Press, (1978). Google Scholar

[21]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems,, J. Funct. Anal., 257 (2009), 3802. doi: 10.1016/j.jfa.2009.09.013. Google Scholar

[22]

J. Zhang, Z. Chen and W. Zou, Standing waves for nonlinear Schrödinger equations involving critical growth,, preprint, (). Google Scholar

[23]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I,, Ann.Inst.H.Poincaré Anal. Non Linéaire, 1 (1984), 109. Google Scholar

show all references

References:
[1]

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, Arch. Ration. Mech. Anal., 140 (1997), 285. doi: 10.1007/s002050050067. Google Scholar

[2]

A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, Arch. Ration. Mech. Anal., 159 (2001), 253. doi: 10.1007/s002050100152. Google Scholar

[3]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential,, Discrete Continuous Dynam. Systems, 33 (2013), 7. Google Scholar

[4]

T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation,, Z. angew. Math. Phys., 51 (2000), 266. doi: 10.1007/s000330050003. Google Scholar

[5]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}$ in $R^N$,, J. Funct. Anal., 88 (1990), 90. doi: 10.1016/0022-1236(90)90120-A. Google Scholar

[6]

J. Byeon and Z. Q. Wang, Standing waves with a ciritical frequency for nonlinear Schrödinger equations II,, Calc.Var., 18 (2003), 207. doi: 10.1007/s00526-002-0191-8. Google Scholar

[7]

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann. Inst. Henri Poincaré, 2 (1985), 463. Google Scholar

[8]

J. Chabrowski and J. Yang, Multiple semilclassical solutions of the Schrödinger equation involving a critical Sobolev exponent,, Portugaliae Mathematica, 57 (2000), 273. Google Scholar

[9]

J. Chabrowski and J. Yang, Existence theorems for the Schrödinger equation involving a critical Sobolev exponent,, Z. angew. Math. Phys., 49 (1998), 276. doi: 10.1007/PL00001485. Google Scholar

[10]

S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions,, J. Diff. Equat., 160 (2000), 118. doi: 10.1006/jdeq.1999.3662. Google Scholar

[11]

S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations,, Proc. Royal Soc. Edinburgh, 128 (1998), 1249. doi: 10.1017/S030821050002730X. Google Scholar

[12]

M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations,, Ann. Inst. Henri Poincar$\acutee$, 15 (1998), 127. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar

[13]

M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245. doi: 10.1006/jfan.1996.3085. Google Scholar

[14]

Y. Ding and J. Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials,, J. Funct. Anal., 251 (2007), 546. doi: 10.1016/j.jfa.2007.07.005. Google Scholar

[15]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0. Google Scholar

[16]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method,, Comm. Part. Diff. Equat., 21 (1996), 787. doi: 10.1080/03605309608821208. Google Scholar

[17]

Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential,, Comm. Math. Phys., 131 (1990), 223. Google Scholar

[18]

Y.-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_a$,, Comm. Part. Diff. Equat., 13 (1988), 1499. doi: 10.1080/03605308808820585. Google Scholar

[19]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals,, Milan J.Math., 73 (2005), 563. doi: 10.1007/s00032-005-0047-8. Google Scholar

[20]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, vol IV,", Academic Press, (1978). Google Scholar

[21]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems,, J. Funct. Anal., 257 (2009), 3802. doi: 10.1016/j.jfa.2009.09.013. Google Scholar

[22]

J. Zhang, Z. Chen and W. Zou, Standing waves for nonlinear Schrödinger equations involving critical growth,, preprint, (). Google Scholar

[23]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I,, Ann.Inst.H.Poincaré Anal. Non Linéaire, 1 (1984), 109. Google Scholar

[1]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[2]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[3]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[4]

Miaomiao Niu, Zhongwei Tang. Least energy solutions of nonlinear Schrödinger equations involving the half Laplacian and potential wells. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1215-1231. doi: 10.3934/cpaa.2016.15.1215

[5]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[6]

Henri Berestycki, Juncheng Wei. On least energy solutions to a semilinear elliptic equation in a strip. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1083-1099. doi: 10.3934/dcds.2010.28.1083

[7]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[8]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[9]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[10]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[11]

Yuxia Guo, Zhongwei Tang. Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3393-3415. doi: 10.3934/dcds.2015.35.3393

[12]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[13]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[14]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[15]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[16]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[17]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[18]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[19]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[20]

Y. Kabeya. Behaviors of solutions to a scalar-field equation involving the critical Sobolev exponent with the Robin condition. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 117-134. doi: 10.3934/dcds.2006.14.117

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]