• Previous Article
    Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity
  • CPAA Home
  • This Issue
  • Next Article
    Mirror symmetry for a Hessian over-determined problem and its generalization
November  2014, 13(6): 2289-2303. doi: 10.3934/cpaa.2014.13.2289

Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold

1. 

College of Science, Hohai University, Nanjing, 210098, China, China

Received  September 2013 Revised  January 2014 Published  July 2014

In this paper, we study the existence of positive solution to $p-$Kirchhoff type problem \begin{eqnarray} &(a+\mu(\int_{\mathbb{R}^N}(|\nabla u|^p+V(x)|u|^p)dx)^{\tau})(-\Delta_pu+V(x)|u|^{p-2}u)=|u|^{m-2}u\\ &+\lambda |u|^{q-2}u, \; {\rm in}\; \mathbb{R}^N \\ &u(x)>0, \;\;{\rm in}\;\; \mathbb{R}^N,\;\; u\in W^{1,p}(\mathbb{R}^N), \end{eqnarray} where $a, \mu>0, \tau\ge 0, \lambda\in \mathbb{R} $ and $1 < p < N, p < q < m < p^*=\frac{pN}{N-p}$. The potential $V(x)\in C(\mathbb{R}^N)$ and $0 < \inf_{x\in\mathbb{R}^N}V(x) < \sup_{x\in\mathbb{R}^N}V(x) < \infty$. The existence of solution will be obtained by the Nehari manifold and variational method.
Citation: Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289
References:
[1]

C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity,, \emph{J. Differential Equations}, 254 (2013), 1977. doi: 10.1016/j.jde.2012.11.013. Google Scholar

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity,, \emph{J. Eur. Math. Soc.}, 7 (2005), 117. doi: 10.4171/JEMS/24. Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, \emph{Differential and Integral Equations}, 18 (2005), 1321. Google Scholar

[4]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners,, 1$^{nd}$ edition, (2011). doi: 10.1007/978-0-85729-227-8. Google Scholar

[5]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[6]

J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential,, \emph{J. Eur. Math. Soc.}, 8 (2006), 217. doi: 10.4171/JEMS/48. Google Scholar

[7]

C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$,, \emph{Computers and Mathematics with Applications}, 6 (2013), 1909. doi: 10.1016/j.camwa.2013.04.017. Google Scholar

[8]

C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions,, \emph{Applied Mathematics Letters}, 28 (2014), 82. doi: 10.1016/j.aml.2013.10.005. Google Scholar

[9]

S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$,, \emph{Nonlinear Analysis: Real World Applications}, 14 (2013), 1477. doi: 10.1016/j.nonrwa.2012.10.010. Google Scholar

[10]

C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$,, \emph{Nonlinear Analysis}, 86 (2013), 146. doi: 10.1016/j.na.2013.03.017. Google Scholar

[11]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation,, \emph{Arch. Rational Mech. Anal.}, 91 (1986), 283. doi: 10.1007/BF00282336. Google Scholar

[12]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics Vol.19, (1998). Google Scholar

[13]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions,, \emph{J. Differential Equations}, 253 (2012), 2285. doi: 10.1016/j.jde.2012.05.017. Google Scholar

[14]

Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eire}, 23 (2006), 829. doi: 10.1016/j.anihpc.2006.01.003. Google Scholar

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 1 (1984), 223. Google Scholar

[16]

W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, \emph{J. Appl. Math. Comput.}, 39 (2012), 473. doi: 10.1007/s12190-012-0536-1. Google Scholar

[17]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Analysis}, 75 (2012), 3470. doi: 10.1016/j.na.2012.01.004. Google Scholar

[18]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$,, \emph{Nonlinear Analysis: Real World Applications}, 12 (2011), 1278. doi: 10.1016/j.nonrwa.2010.09.023. Google Scholar

[19]

L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials,, \emph{Nonlinear Analysis}, 83 (2013), 58. doi: 10.1016/j.na.2012.12.012. Google Scholar

show all references

References:
[1]

C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity,, \emph{J. Differential Equations}, 254 (2013), 1977. doi: 10.1016/j.jde.2012.11.013. Google Scholar

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potential vanishing at infinity,, \emph{J. Eur. Math. Soc.}, 7 (2005), 117. doi: 10.4171/JEMS/24. Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, \emph{Differential and Integral Equations}, 18 (2005), 1321. Google Scholar

[4]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners,, 1$^{nd}$ edition, (2011). doi: 10.1007/978-0-85729-227-8. Google Scholar

[5]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[6]

J. Byeon and Z. Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potential,, \emph{J. Eur. Math. Soc.}, 8 (2006), 217. doi: 10.4171/JEMS/48. Google Scholar

[7]

C. S. Chen, L. Chen and Z. H. Xiu, Existence of nontrivial solutions for singular quasilinear elliptic equations on $\mathbbR^N$,, \emph{Computers and Mathematics with Applications}, 6 (2013), 1909. doi: 10.1016/j.camwa.2013.04.017. Google Scholar

[8]

C. S. Chen and Q. Zhu, Existence of positive solutions to $p-$Kirchhoff-type problem without compactness conditions,, \emph{Applied Mathematics Letters}, 28 (2014), 82. doi: 10.1016/j.aml.2013.10.005. Google Scholar

[9]

S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on $\mathbbR^N$,, \emph{Nonlinear Analysis: Real World Applications}, 14 (2013), 1477. doi: 10.1016/j.nonrwa.2012.10.010. Google Scholar

[10]

C. S. Chen, H. X. Song and Z. H. Xiu, Multiple solutions for $ p-$Kirchhoff equations in $\mathbbR^N$,, \emph{Nonlinear Analysis}, 86 (2013), 146. doi: 10.1016/j.na.2013.03.017. Google Scholar

[11]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation,, \emph{Arch. Rational Mech. Anal.}, 91 (1986), 283. doi: 10.1007/BF00282336. Google Scholar

[12]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics Vol.19, (1998). Google Scholar

[13]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of positive solution to Kirchhoff type problems without compactness conditions,, \emph{J. Differential Equations}, 253 (2012), 2285. doi: 10.1016/j.jde.2012.05.017. Google Scholar

[14]

Y. Li, Z. Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eire}, 23 (2006), 829. doi: 10.1016/j.anihpc.2006.01.003. Google Scholar

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 1 (1984), 223. Google Scholar

[16]

W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, \emph{J. Appl. Math. Comput.}, 39 (2012), 473. doi: 10.1007/s12190-012-0536-1. Google Scholar

[17]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, \emph{Nonlinear Analysis}, 75 (2012), 3470. doi: 10.1016/j.na.2012.01.004. Google Scholar

[18]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbbR^N$,, \emph{Nonlinear Analysis: Real World Applications}, 12 (2011), 1278. doi: 10.1016/j.nonrwa.2010.09.023. Google Scholar

[19]

L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials,, \emph{Nonlinear Analysis}, 83 (2013), 58. doi: 10.1016/j.na.2012.12.012. Google Scholar

[1]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[2]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[3]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[4]

Ogabi Chokri. On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1157-1178. doi: 10.3934/cpaa.2016.15.1157

[5]

Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91

[6]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[7]

Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252

[8]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[9]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[10]

Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019

[11]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[12]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[13]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[14]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

[15]

Julián Fernández Bonder, Leandro M. Del Pezzo. An optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential. Communications on Pure & Applied Analysis, 2006, 5 (4) : 675-690. doi: 10.3934/cpaa.2006.5.675

[16]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[17]

F. D. Araruna, F. O. Matias, M. P. Matos, S. M. S. Souza. Hidden regularity for the Kirchhoff equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1049-1056. doi: 10.3934/cpaa.2008.7.1049

[18]

François Gay-Balma, Darryl D. Holm, Tudor S. Ratiu. Variational principles for spin systems and the Kirchhoff rod. Journal of Geometric Mechanics, 2009, 1 (4) : 417-444. doi: 10.3934/jgm.2009.1.417

[19]

Guowei Dai, Ruyun Ma. Unilateral global bifurcation for $p$-Laplacian with non-$p-$1-linearization nonlinearity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 99-116. doi: 10.3934/dcds.2015.35.99

[20]

Jie Xiao. On the variational $p$-capacity problem in the plane. Communications on Pure & Applied Analysis, 2015, 14 (3) : 959-968. doi: 10.3934/cpaa.2015.14.959

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]