• Previous Article
    Approximation of the trajectory attractor for a 3D model of incompressible two-phase-flows
  • CPAA Home
  • This Issue
  • Next Article
    Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials
November  2014, 13(6): 2211-2228. doi: 10.3934/cpaa.2014.13.2211

Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping

1. 

School of Mathematics and Computational Science, Xiangtan University, Hunan 411105

2. 

School of Mathematical Science and Computing Technology, Central South University, Changsha 410075, China

Received  April 2013 Revised  December 2013 Published  July 2014

This paper is concerned with large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. For the nonlinear damping case, i.e. $\beta \neq 0,$ results for the linear damping case are extended to the case of nonlinear damping. Compared with the results obtained by Marcati and Pan, better decay estimates are obtained in this paper.
Citation: Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211
References:
[1]

S. Geng and Z. Wang, Convergence rates to nonlinear diffusion waves for solutions to the system of compressible adiabatic flow through porous media,, \emph{Comm. Partial Differential Equations}, 36 (2011), 850. doi: 10.1080/03605302.2010.520052. Google Scholar

[2]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,, \emph{Comm. Math. Phys.}, 143 (1992), 599. doi: 10.1007/BF02099268. Google Scholar

[3]

L. Hsiao and T.-P. Liu, Nonlinear diffusion phenomena of nonlinear hyperbolic system,, \emph{Chin. Ann. Math. Ser. B}, 14 (1993), 465. Google Scholar

[4]

L. Hsiao and T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media,, \emph{J. Differential Equations}, 125 (1996), 329. doi: 10.1006/jdeq.1996.0034. Google Scholar

[5]

L. Hsiao and D. Serre, Large-time behavior of solutions for the system of compressible adiabatic flow through porous media,, \emph{Chin. Ann. Math. Ser. B}, 16 (1995), 431. Google Scholar

[6]

L. Hsiao and D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media,, \emph{SIAM J. Math. Anal.}, 27 (1996), 70. doi: 10.1137/S0036141094267078. Google Scholar

[7]

M. Jiang and C. Zhu, Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant,, \emph{Discrete Contin. Dyn. Syst. Ser. A}, 23 (2009), 887. doi: 10.3934/dcds.2009.23.887. Google Scholar

[8]

H. Ma and M. Mei, Best asymptotic profile for linear damped p-system with boundary effect,, \emph{J. Differential Equations}, 249 (2010), 446. doi: 10.1016/j.jde.2010.04.008. Google Scholar

[9]

P. Marcati and M. Mei, B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping,, \emph{J. Math. Fluid Mech.}, 7 (2005). doi: 10.1007/s00021-005-0155-9. Google Scholar

[10]

P. Marcati and K. Nishihara, The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media,, \emph{J. Differential Equations}, 191 (2003), 445. doi: 10.1016/S0022-0396(03)00026-3. Google Scholar

[11]

P. Marcati and R. Pan, On the diffusive profiles for the system of compressible adiabatice flow through porous media,, \emph{SIAM J. Math. Anal.}, 33 (2001), 790. doi: 10.1137/S0036141099364401. Google Scholar

[12]

M. Mei, Nonlinear diffusion waves for hyperbolic $p$-system with nonlinear damping,, \emph{J. Differential Equations}, 247 (2009), 1275. doi: 10.1016/j.jde.2009.04.004. Google Scholar

[13]

M. Mei, Best asymptotic profile for hyperbolic p-system with damping,, \emph{SIAM J. Math. Anal.}, 42 (2010), 1. doi: 10.1137/090756594. Google Scholar

[14]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping,, \emph{J. Differential Equations}, 131 (1996), 171. doi: 10.1006/jdeq.1996.0159. Google Scholar

[15]

K. Nishihara, Asymptotic toward the diffusion wave for a one-dimensional compressible flow through porous media,, \emph{Proceedings of the Royal Society of Edinburgh}, 133A (2003), 177. doi: 10.1017/S0308210500002341. Google Scholar

[16]

K. Nishihara and M. Nishikawa, Asymptotic behavior of solutions to the system of compressible adiabatic flow through porous media,, \emph{SIAM J. Math. Anal.}, 33 (2001), 216. doi: 10.1137/S003614109936467X. Google Scholar

[17]

K. Nishihara, W. Wang and T. Yang, $L_p$ -convergence rate to nonlinear diffusion waves for p-system with damping,, \emph{J. Differential Equations}, 161 (1999), 191. doi: 10.1006/jdeq.1999.3703. Google Scholar

[18]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, \emph{Funkcial. Ekvac.}, 41 (1998), 107. Google Scholar

[19]

R. Pan, Darcy's law as long-time limit of adiabatic porous media flow,, \emph{J. Differential Equations}, 220 (2006), 121. doi: 10.1016/j.jde.2004.10.013. Google Scholar

[20]

H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system with damping,, \emph{J. Differential Equations}, 174 (2001), 200. doi: 10.1006/jdeq.2000.3936. Google Scholar

[21]

C. Zhu, Convergence rates to nonlinear diffusion waves for weak solutions to $p$-system with damping,, \emph{Sci. Chin. Ser. A}, 46 (2003), 562. doi: 10.1360/03ys9057. Google Scholar

[22]

C. Zhu and M. Jiang, $L^p$-decay rates to nonlinear diffusion waves for $p$-system with nonlinear damping,, \emph{Sciences in China, 49 (2006), 721. doi: 10.1007/s11425-006-0721-5. Google Scholar

show all references

References:
[1]

S. Geng and Z. Wang, Convergence rates to nonlinear diffusion waves for solutions to the system of compressible adiabatic flow through porous media,, \emph{Comm. Partial Differential Equations}, 36 (2011), 850. doi: 10.1080/03605302.2010.520052. Google Scholar

[2]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,, \emph{Comm. Math. Phys.}, 143 (1992), 599. doi: 10.1007/BF02099268. Google Scholar

[3]

L. Hsiao and T.-P. Liu, Nonlinear diffusion phenomena of nonlinear hyperbolic system,, \emph{Chin. Ann. Math. Ser. B}, 14 (1993), 465. Google Scholar

[4]

L. Hsiao and T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media,, \emph{J. Differential Equations}, 125 (1996), 329. doi: 10.1006/jdeq.1996.0034. Google Scholar

[5]

L. Hsiao and D. Serre, Large-time behavior of solutions for the system of compressible adiabatic flow through porous media,, \emph{Chin. Ann. Math. Ser. B}, 16 (1995), 431. Google Scholar

[6]

L. Hsiao and D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media,, \emph{SIAM J. Math. Anal.}, 27 (1996), 70. doi: 10.1137/S0036141094267078. Google Scholar

[7]

M. Jiang and C. Zhu, Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant,, \emph{Discrete Contin. Dyn. Syst. Ser. A}, 23 (2009), 887. doi: 10.3934/dcds.2009.23.887. Google Scholar

[8]

H. Ma and M. Mei, Best asymptotic profile for linear damped p-system with boundary effect,, \emph{J. Differential Equations}, 249 (2010), 446. doi: 10.1016/j.jde.2010.04.008. Google Scholar

[9]

P. Marcati and M. Mei, B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping,, \emph{J. Math. Fluid Mech.}, 7 (2005). doi: 10.1007/s00021-005-0155-9. Google Scholar

[10]

P. Marcati and K. Nishihara, The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media,, \emph{J. Differential Equations}, 191 (2003), 445. doi: 10.1016/S0022-0396(03)00026-3. Google Scholar

[11]

P. Marcati and R. Pan, On the diffusive profiles for the system of compressible adiabatice flow through porous media,, \emph{SIAM J. Math. Anal.}, 33 (2001), 790. doi: 10.1137/S0036141099364401. Google Scholar

[12]

M. Mei, Nonlinear diffusion waves for hyperbolic $p$-system with nonlinear damping,, \emph{J. Differential Equations}, 247 (2009), 1275. doi: 10.1016/j.jde.2009.04.004. Google Scholar

[13]

M. Mei, Best asymptotic profile for hyperbolic p-system with damping,, \emph{SIAM J. Math. Anal.}, 42 (2010), 1. doi: 10.1137/090756594. Google Scholar

[14]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping,, \emph{J. Differential Equations}, 131 (1996), 171. doi: 10.1006/jdeq.1996.0159. Google Scholar

[15]

K. Nishihara, Asymptotic toward the diffusion wave for a one-dimensional compressible flow through porous media,, \emph{Proceedings of the Royal Society of Edinburgh}, 133A (2003), 177. doi: 10.1017/S0308210500002341. Google Scholar

[16]

K. Nishihara and M. Nishikawa, Asymptotic behavior of solutions to the system of compressible adiabatic flow through porous media,, \emph{SIAM J. Math. Anal.}, 33 (2001), 216. doi: 10.1137/S003614109936467X. Google Scholar

[17]

K. Nishihara, W. Wang and T. Yang, $L_p$ -convergence rate to nonlinear diffusion waves for p-system with damping,, \emph{J. Differential Equations}, 161 (1999), 191. doi: 10.1006/jdeq.1999.3703. Google Scholar

[18]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, \emph{Funkcial. Ekvac.}, 41 (1998), 107. Google Scholar

[19]

R. Pan, Darcy's law as long-time limit of adiabatic porous media flow,, \emph{J. Differential Equations}, 220 (2006), 121. doi: 10.1016/j.jde.2004.10.013. Google Scholar

[20]

H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system with damping,, \emph{J. Differential Equations}, 174 (2001), 200. doi: 10.1006/jdeq.2000.3936. Google Scholar

[21]

C. Zhu, Convergence rates to nonlinear diffusion waves for weak solutions to $p$-system with damping,, \emph{Sci. Chin. Ser. A}, 46 (2003), 562. doi: 10.1360/03ys9057. Google Scholar

[22]

C. Zhu and M. Jiang, $L^p$-decay rates to nonlinear diffusion waves for $p$-system with nonlinear damping,, \emph{Sciences in China, 49 (2006), 721. doi: 10.1007/s11425-006-0721-5. Google Scholar

[1]

Shifeng Geng, Zhen Wang. Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant. Communications on Pure & Applied Analysis, 2012, 11 (2) : 475-500. doi: 10.3934/cpaa.2012.11.475

[2]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[3]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

[4]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[5]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[6]

Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure & Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959

[7]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[8]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[9]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[10]

Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009

[11]

Jishan Fan, Fei Jiang. Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions. Communications on Pure & Applied Analysis, 2016, 15 (1) : 73-90. doi: 10.3934/cpaa.2016.15.73

[12]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks & Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

[13]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[14]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks & Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[15]

Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281

[16]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

[17]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[18]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[19]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[20]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020009

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]