July  2014, 13(4): 1541-1551. doi: 10.3934/cpaa.2014.13.1541

General decay estimates for a Cauchy viscoelastic wave problem

1. 

Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900

2. 

King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261

Received  August 2013 Revised  December 2013 Published  February 2014

In this paper, we consider the Cauchy problem of a viscoelatic wave equation and by using the energy method in the Fourier space, we show general decay estimates of the solution. This result improves and generalizes some other results in the literature.
Citation: Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541
References:
[1]

S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping,, \emph{Electron. J. Differential Equations}, (2004). Google Scholar

[2]

S. Berrimi and S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source,, \emph{Nonl. Anal.}, 64 (2006), 2314. doi: 10.1016/j.na.2005.08.015. Google Scholar

[3]

E. L. Cabanillas and J. E. Mu noz Rivera, Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels,, \emph{Comm. Math. Phys.}, 177 (1996), 583. Google Scholar

[4]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, \emph{Nonlinear Anal.}, 68 (2008), 177. Google Scholar

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping,, \emph{E. J. Differential Equations}, 44 (2002), 1. Google Scholar

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma and J. A. Soriano, Global existence and asymptotic stability for viscoelastic problems,, \emph{Differential Integral Equations}, 15 (2002), 731. Google Scholar

[7]

M. Conti, S. Gatti and V. Pata, Decay rates of volterra equations on $\mathbbR^n$,, \emph{Cent. Eur. J. Math.}, 5 (2007), 720. doi: 10.2478/s11533-007-0024-2. Google Scholar

[8]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, \emph{Arch. Rational Mech. Anal.}, 37 (1970), 297. Google Scholar

[9]

C. M. Dafermos, On abstract volterra equations with applications to linear viscoelasticity,, \emph{J. Differential Equations}, 7 (1970), 554. Google Scholar

[10]

G. Dassios and F. Zafiropoulos, Equipartition of energy in linearized $3$-d viscoelasticity,, \emph{Quart. Appl. Math.}, 48 (1990), 715. Google Scholar

[11]

J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et décomposition de fonctions,, \emph{C. R. Acad. Sci. Paris S{\'e}r. I Math.}, 315 (1992), 693. Google Scholar

[12]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping,, \emph{Math. Methods Appl. Sci.}, 32 (2009), 346. doi: 10.1002/mma.1041. Google Scholar

[13]

W. J. Hrusa, Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data,, \emph{SIAM J. Math. Anal.}, 16 (1985), 110. doi: 10.1137/0516007. Google Scholar

[14]

R. Ikehata, Decay estimates by moments and masses of initial data for linear damped wave equations,, \emph{Int. J. Pure Appl. Math.}, 5 (2003), 77. Google Scholar

[15]

W. Liu, General decay of solutions to a viscoelastic wave equation with nonlinear localized damping,, \emph{Ann. Acad. Sci. Fenn. Math.}, 34 (2009), 291. Google Scholar

[16]

W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms,, \emph{J. Math. Phys.}, 50 (2009). doi: 10.1063/1.3254323. Google Scholar

[17]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation,, \emph{Kinetic. Related. Models.}, 4 (2011), 531. doi: 10.3934/krm.2011.4.531. Google Scholar

[18]

S. A. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source,, \emph{Nonl. Anal.}, 69 (2008), 2589. doi: 10.1016/j.na.2007.08.035. Google Scholar

[19]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, \emph{J. Math. Anal. Appl.}, 341 (2008), 1457. Google Scholar

[20]

S. A. Messaoudi and M. I. Mustafa, On the control of solutions of viscoelastic equations with boundary feedback,, \emph{Nonlinear Anal. Real World Appl.}, 10 (2009), 3132. doi: 10.1016/j.nonrwa.2008.10.026. Google Scholar

[21]

J. E. Mu noz Rivera and M. G. Naso, On the decay of the energy for systems with memory and indefinite dissipation,, \emph{Asymptot. Anal.}, 49 (2006), 189. Google Scholar

[22]

J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping,, \emph{J. Math. Phys.}, 50 (2009). doi: 10.1063/1.3187780. Google Scholar

[23]

R. Racke and B. Said-Houari, Decay rates for semilinear viscoelastic systems in weighted spaces,, \emph{J. Hyperbolic Differ. Equ.}, 9 (2012), 67. doi: 10.1142/S0219891612500026. Google Scholar

[24]

R. Racke and B. Said-Houari, Decay rates and global existence for semilinear dissipative Timoshenko systems,, \emph{Quart. Appl. Math.}, 72 (2013), 229. doi: 10.1090/S0033-569X-2012-01280-8. Google Scholar

[25]

J. E. Mu noz Rivera, Asymptotic behaviour in linear viscoelasticity,, \emph{Quart. Appl. Math.}, 52 (1994), 628. Google Scholar

[26]

J. E. Mu noz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,, \emph{J. Math. Anal. Appl.}, 286 (2003), 692. Google Scholar

[27]

J. E. Mu noz Rivera and A. Peres Salvatierra, Asymptotic behavior of the energy in partially viscoelastic materials,, \emph{Quart. Appl. Math.}, 59 (2001), 557. Google Scholar

[28]

B. Said-Houari, Diffusion phenomenon for linear dissipative wave equations,, \emph{Z. Anal. Anwend.}, 31 (2012), 267. doi: 10.4171/ZAA/1459. Google Scholar

[29]

J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation,, PhD thesis, (2004). Google Scholar

show all references

References:
[1]

S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping,, \emph{Electron. J. Differential Equations}, (2004). Google Scholar

[2]

S. Berrimi and S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source,, \emph{Nonl. Anal.}, 64 (2006), 2314. doi: 10.1016/j.na.2005.08.015. Google Scholar

[3]

E. L. Cabanillas and J. E. Mu noz Rivera, Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels,, \emph{Comm. Math. Phys.}, 177 (1996), 583. Google Scholar

[4]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, \emph{Nonlinear Anal.}, 68 (2008), 177. Google Scholar

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping,, \emph{E. J. Differential Equations}, 44 (2002), 1. Google Scholar

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma and J. A. Soriano, Global existence and asymptotic stability for viscoelastic problems,, \emph{Differential Integral Equations}, 15 (2002), 731. Google Scholar

[7]

M. Conti, S. Gatti and V. Pata, Decay rates of volterra equations on $\mathbbR^n$,, \emph{Cent. Eur. J. Math.}, 5 (2007), 720. doi: 10.2478/s11533-007-0024-2. Google Scholar

[8]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, \emph{Arch. Rational Mech. Anal.}, 37 (1970), 297. Google Scholar

[9]

C. M. Dafermos, On abstract volterra equations with applications to linear viscoelasticity,, \emph{J. Differential Equations}, 7 (1970), 554. Google Scholar

[10]

G. Dassios and F. Zafiropoulos, Equipartition of energy in linearized $3$-d viscoelasticity,, \emph{Quart. Appl. Math.}, 48 (1990), 715. Google Scholar

[11]

J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et décomposition de fonctions,, \emph{C. R. Acad. Sci. Paris S{\'e}r. I Math.}, 315 (1992), 693. Google Scholar

[12]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping,, \emph{Math. Methods Appl. Sci.}, 32 (2009), 346. doi: 10.1002/mma.1041. Google Scholar

[13]

W. J. Hrusa, Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data,, \emph{SIAM J. Math. Anal.}, 16 (1985), 110. doi: 10.1137/0516007. Google Scholar

[14]

R. Ikehata, Decay estimates by moments and masses of initial data for linear damped wave equations,, \emph{Int. J. Pure Appl. Math.}, 5 (2003), 77. Google Scholar

[15]

W. Liu, General decay of solutions to a viscoelastic wave equation with nonlinear localized damping,, \emph{Ann. Acad. Sci. Fenn. Math.}, 34 (2009), 291. Google Scholar

[16]

W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms,, \emph{J. Math. Phys.}, 50 (2009). doi: 10.1063/1.3254323. Google Scholar

[17]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation,, \emph{Kinetic. Related. Models.}, 4 (2011), 531. doi: 10.3934/krm.2011.4.531. Google Scholar

[18]

S. A. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source,, \emph{Nonl. Anal.}, 69 (2008), 2589. doi: 10.1016/j.na.2007.08.035. Google Scholar

[19]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, \emph{J. Math. Anal. Appl.}, 341 (2008), 1457. Google Scholar

[20]

S. A. Messaoudi and M. I. Mustafa, On the control of solutions of viscoelastic equations with boundary feedback,, \emph{Nonlinear Anal. Real World Appl.}, 10 (2009), 3132. doi: 10.1016/j.nonrwa.2008.10.026. Google Scholar

[21]

J. E. Mu noz Rivera and M. G. Naso, On the decay of the energy for systems with memory and indefinite dissipation,, \emph{Asymptot. Anal.}, 49 (2006), 189. Google Scholar

[22]

J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping,, \emph{J. Math. Phys.}, 50 (2009). doi: 10.1063/1.3187780. Google Scholar

[23]

R. Racke and B. Said-Houari, Decay rates for semilinear viscoelastic systems in weighted spaces,, \emph{J. Hyperbolic Differ. Equ.}, 9 (2012), 67. doi: 10.1142/S0219891612500026. Google Scholar

[24]

R. Racke and B. Said-Houari, Decay rates and global existence for semilinear dissipative Timoshenko systems,, \emph{Quart. Appl. Math.}, 72 (2013), 229. doi: 10.1090/S0033-569X-2012-01280-8. Google Scholar

[25]

J. E. Mu noz Rivera, Asymptotic behaviour in linear viscoelasticity,, \emph{Quart. Appl. Math.}, 52 (1994), 628. Google Scholar

[26]

J. E. Mu noz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,, \emph{J. Math. Anal. Appl.}, 286 (2003), 692. Google Scholar

[27]

J. E. Mu noz Rivera and A. Peres Salvatierra, Asymptotic behavior of the energy in partially viscoelastic materials,, \emph{Quart. Appl. Math.}, 59 (2001), 557. Google Scholar

[28]

B. Said-Houari, Diffusion phenomenon for linear dissipative wave equations,, \emph{Z. Anal. Anwend.}, 31 (2012), 267. doi: 10.4171/ZAA/1459. Google Scholar

[29]

J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation,, PhD thesis, (2004). Google Scholar

[1]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[2]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[3]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[4]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[5]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[6]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[7]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[8]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[9]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[10]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[11]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[12]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[13]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure & Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[14]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[15]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[16]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[17]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[18]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[19]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[20]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]