May  2014, 13(3): 1317-1325. doi: 10.3934/cpaa.2014.13.1317

Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime

1. 

Sciences College, Lishui University, Zhejiang 323000, China

2. 

College of Education, Lishui University, Zhejinag 323000, China

Received  August 2013 Revised  October 2013 Published  December 2013

In this paper, we study the exact boundary controllability for the cubic focusing semilinear wave equation on Schwarzschild black hole background in radially symmetrical case. When the initial data and the final data are in the so called potential well, we find that the sufficient condition for the global existence is also sufficient to ensure the exact boundary controllability of the problem. Moreover, under the assumption of radial symmetry, our problem is changed to one space dimension case, and then the control time can be that of the linear wave equation.
Citation: Ning-An Lai, Jinglei Zhao. Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1317-1325. doi: 10.3934/cpaa.2014.13.1317
References:
[1]

G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain,, \emph{J. Math. Pures Appl.}, 58 (1979), 249. Google Scholar

[2]

Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, Analysis, Manifolds and Physics,, Elsevier Science B.V., (1996). Google Scholar

[3]

T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalityis for parabolic and hyperbolic systems with potentials,, \emph{Ann. Inst. H. poincare Anal. Non Lineaire}, 25 (2008), 1. doi: 10.1016/j.anihpc.2006.07.005. Google Scholar

[4]

X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations,, \emph{SIAM J. Control Optim.}, 46 (2007), 1578. doi: 10.1137/040610222. Google Scholar

[5]

Y. X. Guo and P. F. Yao, On boundary stability of wave equations with variable coefficients,, \emph{Acta Math. Sin., 18 (2002), 589. doi: 10.1007/s102550200061. Google Scholar

[6]

S.Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear klein-Gorden equations,, \emph{Anal. PDE}, 4 (2011), 405. doi: 10.2140/apde.2011.4.405. Google Scholar

[7]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, \emph{Acta Math.}, 201 (2008), 147. doi: 10.1007/s11511-008-0031-6. Google Scholar

[8]

Tatsien Li, Controllability and Observability for Quasilinear Hyperbolic Systems,, AIMS series on applied mathematics, (2010). Google Scholar

[9]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, \emph{SIAM Rev.}, 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[10]

Ch. Misner, K. Thorne and J. Wheeler, Gravitation,, vol. III, (1973). Google Scholar

[11]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, \emph{Israel J. Math.}, 22 (1975), 272. Google Scholar

[12]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions,, \emph{SIAM Rev.}, 20 (1978), 639. doi: 10.1137/1020095. Google Scholar

[13]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations,, \emph{Arch. Rational Mech. and Anal.}, 30 (1968), 148. Google Scholar

[14]

J. Shatah, Unstable ground state of nonlinear klein-Gorden equations,, \emph{Trans. Amer. Math. Soc.}, 290 (1985), 701. doi: 10.2307/2000308. Google Scholar

[15]

J. Zhang, Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gorden equations,, \emph{Nonlinear Anal.}, 48 (2002), 191. doi: 10.1016/S0362-546X(00)00180-2. Google Scholar

[16]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations,, \emph{proceedings of the international congress of mathematicians, (2010). Google Scholar

[17]

X. Zhang, Remarks on the controllability of some quasilinear equations,, \emph{Ser. Contemp. Appl. Math. CAM}, 15 (2010). doi: 10.1142/9789814322898_0020. Google Scholar

[18]

Y. Zhou and Z. Lei, Local exact boundary controllability for nonlinear wave equations,, \emph{SIAM J. Control Optim.}, 46 (2007), 1022. doi: 10.1137/060650222. Google Scholar

[19]

Y. Zhou, W. Xu and Z. Lei, Global exact boundary controllability for cubic semi-linear wave equations and Klein-Gordon equations,, \emph{Chin. Ann. Math.}, 31B (2010), 35. doi: 10.1007/s11401-008-0426-x. Google Scholar

[20]

Y. Zhou and N. A. Lai, Potential well and exact boundary controllability for semilinear wave equations,, \emph{Adv. Differential Equations}, 16 (2011), 1021. Google Scholar

[21]

E. Zuazua, Exact controllability for the semilinear wave equations,, \emph{J. Math. Pures Appl.}, 69 (1990), 1. Google Scholar

show all references

References:
[1]

G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain,, \emph{J. Math. Pures Appl.}, 58 (1979), 249. Google Scholar

[2]

Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, Analysis, Manifolds and Physics,, Elsevier Science B.V., (1996). Google Scholar

[3]

T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalityis for parabolic and hyperbolic systems with potentials,, \emph{Ann. Inst. H. poincare Anal. Non Lineaire}, 25 (2008), 1. doi: 10.1016/j.anihpc.2006.07.005. Google Scholar

[4]

X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations,, \emph{SIAM J. Control Optim.}, 46 (2007), 1578. doi: 10.1137/040610222. Google Scholar

[5]

Y. X. Guo and P. F. Yao, On boundary stability of wave equations with variable coefficients,, \emph{Acta Math. Sin., 18 (2002), 589. doi: 10.1007/s102550200061. Google Scholar

[6]

S.Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear klein-Gorden equations,, \emph{Anal. PDE}, 4 (2011), 405. doi: 10.2140/apde.2011.4.405. Google Scholar

[7]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, \emph{Acta Math.}, 201 (2008), 147. doi: 10.1007/s11511-008-0031-6. Google Scholar

[8]

Tatsien Li, Controllability and Observability for Quasilinear Hyperbolic Systems,, AIMS series on applied mathematics, (2010). Google Scholar

[9]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, \emph{SIAM Rev.}, 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[10]

Ch. Misner, K. Thorne and J. Wheeler, Gravitation,, vol. III, (1973). Google Scholar

[11]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, \emph{Israel J. Math.}, 22 (1975), 272. Google Scholar

[12]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions,, \emph{SIAM Rev.}, 20 (1978), 639. doi: 10.1137/1020095. Google Scholar

[13]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations,, \emph{Arch. Rational Mech. and Anal.}, 30 (1968), 148. Google Scholar

[14]

J. Shatah, Unstable ground state of nonlinear klein-Gorden equations,, \emph{Trans. Amer. Math. Soc.}, 290 (1985), 701. doi: 10.2307/2000308. Google Scholar

[15]

J. Zhang, Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gorden equations,, \emph{Nonlinear Anal.}, 48 (2002), 191. doi: 10.1016/S0362-546X(00)00180-2. Google Scholar

[16]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations,, \emph{proceedings of the international congress of mathematicians, (2010). Google Scholar

[17]

X. Zhang, Remarks on the controllability of some quasilinear equations,, \emph{Ser. Contemp. Appl. Math. CAM}, 15 (2010). doi: 10.1142/9789814322898_0020. Google Scholar

[18]

Y. Zhou and Z. Lei, Local exact boundary controllability for nonlinear wave equations,, \emph{SIAM J. Control Optim.}, 46 (2007), 1022. doi: 10.1137/060650222. Google Scholar

[19]

Y. Zhou, W. Xu and Z. Lei, Global exact boundary controllability for cubic semi-linear wave equations and Klein-Gordon equations,, \emph{Chin. Ann. Math.}, 31B (2010), 35. doi: 10.1007/s11401-008-0426-x. Google Scholar

[20]

Y. Zhou and N. A. Lai, Potential well and exact boundary controllability for semilinear wave equations,, \emph{Adv. Differential Equations}, 16 (2011), 1021. Google Scholar

[21]

E. Zuazua, Exact controllability for the semilinear wave equations,, \emph{J. Math. Pures Appl.}, 69 (1990), 1. Google Scholar

[1]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[2]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[3]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[4]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[5]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[6]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[7]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[8]

Patrick Martinez, Judith Vancostenoble. The cost of boundary controllability for a parabolic equation with inverse square potential. Evolution Equations & Control Theory, 2019, 8 (2) : 397-422. doi: 10.3934/eect.2019020

[9]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

[10]

Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679

[11]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[12]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[13]

Louis Tebou. Simultaneous controllability of some uncoupled semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3721-3743. doi: 10.3934/dcds.2015.35.3721

[14]

José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019039

[15]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[16]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[17]

George Avalos. Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam--like equation. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 265-288. doi: 10.3934/dcds.1997.3.265

[18]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[19]

Scott W. Hansen, Oleg Yu Imanuvilov. Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions. Mathematical Control & Related Fields, 2011, 1 (2) : 189-230. doi: 10.3934/mcrf.2011.1.189

[20]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]