
Previous Article
Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities
 CPAA Home
 This Issue

Next Article
Incompressible limit for the full magnetohydrodynamics flows under Strong Stratification on unbounded domains
The Dirichlet problem for fully nonlinear elliptic equations nondegenerate in a fixed direction
1.  Dipartimento di Matematica Pura e Applicata, Università degli Studi di Padova, Via Belzoni, 7, 35131, Padova 
References:
[1] 
M. Bardi and S. Bottacin, On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control,, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 13. 
[2] 
M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of HamiltonJacobi Bellman Equations,", Systems and Control: Foundations and Applications. Birkhauser, (1997). 
[3] 
M. Bardi and P. Mannucci, On the Dirichlet problem for nontotally degenerate fully nonlinear elliptic equations,, Commun. Pure Appl. Anal., 5 (2006), 709. 
[4] 
M. Bardi and P. Mannucci, Comparison principles for subelliptic equations of MongeAmpère type,, Boll. Unione Mat. Ital., 9 (2008), 489. 
[5] 
M. Bardi and P. Mannucci, Comparison principles for equations of MongeAmpère type in Carnot groups: a direct proof,, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 41. 
[6] 
M. Bardi and P. Mannucci, Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of MongeAmpère type,, to appear on Forum Math., (2013), 2013. doi: DOI: 10.1515/forum20130067. 
[7] 
F. H. Beatrous, T. J. Bieske and J. J. Manfredi, The maximum principle for vector fields, in, Amer. Math. Soc., Providence, RI, 2005, 19., 370 (2005), 1. 
[8] 
T. Bieske, On infinite harmonic functions on the Heisenberg group,, Comm. Partial Differential Equations, 27 (2002), 727. 
[9] 
T. Bieske, Viscosity solutions on Grushintype planes,, Illinois J. Math., 46 (2002), 893. 
[10] 
T. Bieske and L. Capogna, The AronssonEuler equation for absolutely minimizing Lipschitz extensions with respect to CarnotCarathodory metrics,, Trans. Amer. Math. Soc., 357 (2005), 795. 
[11] 
I. Birindelli, I. Capuzzo Dolcetta and A. Cutrì, Indefinite semilinear equations on the Heisenberg group: a priori bounds and existence,, Comm. Partial Differential Equations, 23 (1998), 1123. 
[12] 
I. Birindelli and B. Stroffolini, Existence theorems for fully nonlinear equations in the Heisenberg group,, Subelliptic PDE's and applications to geometry and finance, 6 (2007), 49. 
[13] 
A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory For Their SubLaplacians,", Springer, (2007). 
[14] 
M. G. Crandall, Viscosity solutions: a primer,, In, (1660). 
[15] 
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of secondorder partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. 
[16] 
A. Cutrì and N. Tchou, Barrier functions for PucciHeisenberg operators and applications,, Int. J. Dyn. Syst. Differ. Equ., 1, 2 (2007), 117. 
[17] 
G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups,", Princeton University Press, (1982). 
[18] 
C. E. Gutierrez and A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group,, Comm. Partial Differential Equations, 29 (2004), 1305. 
[19] 
L. Hörmander, Hypoelliptic Second Order Differential Equations,, Acta Math. Uppsala, 119 (1967), 147. 
[20] 
M. A. Katsoulakis, A representation formula and regularizing properties for viscosity solutions of secondorder fully nonlinear degenerate parabolic equations,, Nonlinear Analysis, 24 (1995), 147. 
[21] 
H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear secondorder elliptic partial differential equations,, J. Diff. Eq., 83 (1990), 26. 
[22] 
R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations,, Arch. Rational Mech., 101 (1988), 1. 
[23] 
J. J. Manfredi, Nonlinear subelliptic equations on Carnot groups,, Notes of a course given at the Third School on Analysis and Geometry in Metric Spaces, (2003). 
[24] 
C. Y. Wang, The Aronsson equation for absolute minimizers of $L^\infty$functionals associated with vector fields satisfying Hörmander's condition,, Trans. Amer. Math. Soc. 359, 1 (2007), 91. 
show all references
References:
[1] 
M. Bardi and S. Bottacin, On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control,, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 13. 
[2] 
M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of HamiltonJacobi Bellman Equations,", Systems and Control: Foundations and Applications. Birkhauser, (1997). 
[3] 
M. Bardi and P. Mannucci, On the Dirichlet problem for nontotally degenerate fully nonlinear elliptic equations,, Commun. Pure Appl. Anal., 5 (2006), 709. 
[4] 
M. Bardi and P. Mannucci, Comparison principles for subelliptic equations of MongeAmpère type,, Boll. Unione Mat. Ital., 9 (2008), 489. 
[5] 
M. Bardi and P. Mannucci, Comparison principles for equations of MongeAmpère type in Carnot groups: a direct proof,, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 41. 
[6] 
M. Bardi and P. Mannucci, Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of MongeAmpère type,, to appear on Forum Math., (2013), 2013. doi: DOI: 10.1515/forum20130067. 
[7] 
F. H. Beatrous, T. J. Bieske and J. J. Manfredi, The maximum principle for vector fields, in, Amer. Math. Soc., Providence, RI, 2005, 19., 370 (2005), 1. 
[8] 
T. Bieske, On infinite harmonic functions on the Heisenberg group,, Comm. Partial Differential Equations, 27 (2002), 727. 
[9] 
T. Bieske, Viscosity solutions on Grushintype planes,, Illinois J. Math., 46 (2002), 893. 
[10] 
T. Bieske and L. Capogna, The AronssonEuler equation for absolutely minimizing Lipschitz extensions with respect to CarnotCarathodory metrics,, Trans. Amer. Math. Soc., 357 (2005), 795. 
[11] 
I. Birindelli, I. Capuzzo Dolcetta and A. Cutrì, Indefinite semilinear equations on the Heisenberg group: a priori bounds and existence,, Comm. Partial Differential Equations, 23 (1998), 1123. 
[12] 
I. Birindelli and B. Stroffolini, Existence theorems for fully nonlinear equations in the Heisenberg group,, Subelliptic PDE's and applications to geometry and finance, 6 (2007), 49. 
[13] 
A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory For Their SubLaplacians,", Springer, (2007). 
[14] 
M. G. Crandall, Viscosity solutions: a primer,, In, (1660). 
[15] 
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of secondorder partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. 
[16] 
A. Cutrì and N. Tchou, Barrier functions for PucciHeisenberg operators and applications,, Int. J. Dyn. Syst. Differ. Equ., 1, 2 (2007), 117. 
[17] 
G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups,", Princeton University Press, (1982). 
[18] 
C. E. Gutierrez and A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group,, Comm. Partial Differential Equations, 29 (2004), 1305. 
[19] 
L. Hörmander, Hypoelliptic Second Order Differential Equations,, Acta Math. Uppsala, 119 (1967), 147. 
[20] 
M. A. Katsoulakis, A representation formula and regularizing properties for viscosity solutions of secondorder fully nonlinear degenerate parabolic equations,, Nonlinear Analysis, 24 (1995), 147. 
[21] 
H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear secondorder elliptic partial differential equations,, J. Diff. Eq., 83 (1990), 26. 
[22] 
R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations,, Arch. Rational Mech., 101 (1988), 1. 
[23] 
J. J. Manfredi, Nonlinear subelliptic equations on Carnot groups,, Notes of a course given at the Third School on Analysis and Geometry in Metric Spaces, (2003). 
[24] 
C. Y. Wang, The Aronsson equation for absolute minimizers of $L^\infty$functionals associated with vector fields satisfying Hörmander's condition,, Trans. Amer. Math. Soc. 359, 1 (2007), 91. 
[1] 
Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems  S, 2016, 9 (3) : 687696. doi: 10.3934/dcdss.2016022 
[2] 
Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems  A, 2019, 39 (5) : 26372659. doi: 10.3934/dcds.2019110 
[3] 
Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for HamiltonJacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543565. doi: 10.3934/eect.2019026 
[4] 
Martino Bardi, Paola Mannucci. On the Dirichlet problem for nontotally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709731. doi: 10.3934/cpaa.2006.5.709 
[5] 
Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems  A, 2013, 33 (8) : 33913405. doi: 10.3934/dcds.2013.33.3391 
[6] 
Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control & Related Fields, 2013, 3 (4) : 467487. doi: 10.3934/mcrf.2013.3.467 
[7] 
Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems  A, 2013, 33 (10) : 45494566. doi: 10.3934/dcds.2013.33.4549 
[8] 
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 16911706. doi: 10.3934/dcds.2017070 
[9] 
Olga Kharlampovich and Alexei Myasnikov. Tarski's problem about the elementary theory of free groups has a positive solution. Electronic Research Announcements, 1998, 4: 101108. 
[10] 
Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897922. doi: 10.3934/cpaa.2015.14.897 
[11] 
L’ubomír Baňas, Amy NovickCohen, Robert Nürnberg. The degenerate and nondegenerate deep quench obstacle problem: A numerical comparison. Networks & Heterogeneous Media, 2013, 8 (1) : 3764. doi: 10.3934/nhm.2013.8.37 
[12] 
Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems  B, 2003, 3 (3) : 401408. doi: 10.3934/dcdsb.2003.3.401 
[13] 
Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 107128. doi: 10.3934/cpaa.2019007 
[14] 
Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110121. doi: 10.3934/proc.2007.2007.110 
[15] 
Ludovic Dan Lemle. $L^1(R^d,dx)$uniqueness of weak solutions for the FokkerPlanck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 6570. doi: 10.3934/era.2008.15.65 
[16] 
Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 23632376. doi: 10.3934/cpaa.2015.14.2363 
[17] 
Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 54135433. doi: 10.3934/dcds.2015.35.5413 
[18] 
Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 13351343. doi: 10.3934/cpaa.2010.9.1335 
[19] 
ChiunChuan Chen, LiChang Hung, HsiaoFeng Liu. Nbarrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 791821. doi: 10.3934/dcds.2018034 
[20] 
Fausto Ferrari, Michele Miranda Jr, Diego Pallara, Andrea Pinamonti, Yannick Sire. Fractional Laplacians, perimeters and heat semigroups in Carnot groups. Discrete & Continuous Dynamical Systems  S, 2018, 11 (3) : 477491. doi: 10.3934/dcdss.2018026 
2017 Impact Factor: 0.884
Tools
Metrics
Other articles
by authors
[Back to Top]