May  2014, 13(3): 1061-1074. doi: 10.3934/cpaa.2014.13.1061

Multi-valued solutions to a class of parabolic Monge-Ampère equations

1. 

School of Mathematics and information Science, Weifang University, Shandong Weifang, 261061, China

Received  March 2013 Revised  September 2013 Published  December 2013

In this paper, we investigate the multi-valued solutions of a class of parabolic Monge-Ampère equation $-u_{t}\det(D^{2}u)=f$. Using the Perron method, we obtain the existence of finitely valued and infinitely valued solutions to the parabolic Monge-Ampère equations. We generalize the results of elliptic Monge-Ampère equations and Hessian equations.
Citation: Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061
References:
[1]

L. Caffarelli, Certain multiple valued harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 54 (1976), 90. Google Scholar

[2]

L. Caffarelli, On the Hölder continuity of multiple valued harmonic functions,, \emph{Indiana Univ. Math. J.}, 25 (1976), 79. Google Scholar

[3]

L. Caffarelli, Monge-Ampère equation, Div-Curl theorems in Lagrangian coordinates, Compression and Rotation,, lecture notes., (). Google Scholar

[4]

L. Caffarelli and Y. Y. Li, Some multi-valued solutions to Monge-Ampère equations,, \emph{Comm. Anal. Geom.}, 14 (2006), 411. Google Scholar

[5]

L. M. Dai and J. G. Bao, Multi-valued solutions to Hessian equations,, \emph{Nonlinear Differential Equations Appl.}, 18 (2011), 447. doi: 10.1007/s00030-011-0103-8. Google Scholar

[6]

L. M. Dai, Multi-valued solutions to Hessian quotient equations,, \emph{Commun. Math. Sci.}, 10 (2012), 717. doi: 10.4310/CMS.2012.v10.n2.a14. Google Scholar

[7]

G. C. Evans, A necessary and sufficient condition of Wiener,, \emph{Amer. Math. Monthly}, 54 (1947), 151. Google Scholar

[8]

G. C. Evans, Surfaces of minimal capacity,, \emph{Proc. Nat. Acad. Sci. U. S. A.}, 26 (1940), 489. Google Scholar

[9]

G. C. Evans, Lectures on multiple valued harmonic functions in space,, \emph{Univ. California Publ. Math. (N.S.)}, 1 (1951), 281. Google Scholar

[10]

W. J. Firey, Shapes of worn stones,, \emph{Mathematika}, 21 (1974), 1. Google Scholar

[11]

C. E. Gutiérrez and Q. B. Huang, $W^{2,p}$ estimates for the parabolic Monge-Ampère equation,, \emph{Arch. Ration. Mech. Anal.}, 159 (2001), 137. doi: 10.1007/s002050100151. Google Scholar

[12]

C. E. Gutiérrez and Q. B. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation,, \emph{Indiana Univ. Math. J.}, 47 (1998), 1459. doi: 10.1512/iumj.1998.47.1563. Google Scholar

[13]

C. E. Gutiérrez and Q. B. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation,, \emph{Trans. Amer. Math. Soc.}, 352 (2000), 4381. doi: 10.1090/S0002-9947-00-02491-0. Google Scholar

[14]

G. Levi, Generalization of a spatial angle theorem,, (Russian) \emph{Translated from the English by Ju. V. Egorov, 26 (1971), 199. Google Scholar

[15]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). Google Scholar

[16]

N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation,, (Russian) \emph{Sibirsk. Mat. $\breveZ$}, 17 (1976), 290. Google Scholar

[17]

K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature,, \emph{Comm. Pure Appl. Math.}, 38 (1985), 867. doi: 10.1002/cpa.3160380615. Google Scholar

[18]

K. Tso, On an Aleksandrov-Bakelman type maximum principle for second-order parabolic equations,, \emph{Comm. Partial Differential Equations}, 10 (1985), 543. doi: 10.1080/03605308508820388. Google Scholar

[19]

R. H. Wang and G. L. Wang, On the existence, uniqueness and regularity of viscosity solution for the first initial boundary value problem to parabolic Monge-Ampère equations,, \emph{Northeast Math. J.}, 8 (1992), 417. Google Scholar

[20]

R. H. Wang and G. L. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation,, \emph{J. Partial Differential Equations}, 6 (1993), 237. Google Scholar

[21]

J. G. Xiong and J. G. Bao, On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations,, \emph{J. Differential Equations}, 250 (2011), 367. doi: 10.1016/j.jde.2010.08.024. Google Scholar

[22]

Y. Zhan, Viscosity Solutions of Nonlinear Degenerate Parabolic Equations and Several Applications,, Ph.D thesis, (2000). Google Scholar

show all references

References:
[1]

L. Caffarelli, Certain multiple valued harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 54 (1976), 90. Google Scholar

[2]

L. Caffarelli, On the Hölder continuity of multiple valued harmonic functions,, \emph{Indiana Univ. Math. J.}, 25 (1976), 79. Google Scholar

[3]

L. Caffarelli, Monge-Ampère equation, Div-Curl theorems in Lagrangian coordinates, Compression and Rotation,, lecture notes., (). Google Scholar

[4]

L. Caffarelli and Y. Y. Li, Some multi-valued solutions to Monge-Ampère equations,, \emph{Comm. Anal. Geom.}, 14 (2006), 411. Google Scholar

[5]

L. M. Dai and J. G. Bao, Multi-valued solutions to Hessian equations,, \emph{Nonlinear Differential Equations Appl.}, 18 (2011), 447. doi: 10.1007/s00030-011-0103-8. Google Scholar

[6]

L. M. Dai, Multi-valued solutions to Hessian quotient equations,, \emph{Commun. Math. Sci.}, 10 (2012), 717. doi: 10.4310/CMS.2012.v10.n2.a14. Google Scholar

[7]

G. C. Evans, A necessary and sufficient condition of Wiener,, \emph{Amer. Math. Monthly}, 54 (1947), 151. Google Scholar

[8]

G. C. Evans, Surfaces of minimal capacity,, \emph{Proc. Nat. Acad. Sci. U. S. A.}, 26 (1940), 489. Google Scholar

[9]

G. C. Evans, Lectures on multiple valued harmonic functions in space,, \emph{Univ. California Publ. Math. (N.S.)}, 1 (1951), 281. Google Scholar

[10]

W. J. Firey, Shapes of worn stones,, \emph{Mathematika}, 21 (1974), 1. Google Scholar

[11]

C. E. Gutiérrez and Q. B. Huang, $W^{2,p}$ estimates for the parabolic Monge-Ampère equation,, \emph{Arch. Ration. Mech. Anal.}, 159 (2001), 137. doi: 10.1007/s002050100151. Google Scholar

[12]

C. E. Gutiérrez and Q. B. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation,, \emph{Indiana Univ. Math. J.}, 47 (1998), 1459. doi: 10.1512/iumj.1998.47.1563. Google Scholar

[13]

C. E. Gutiérrez and Q. B. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation,, \emph{Trans. Amer. Math. Soc.}, 352 (2000), 4381. doi: 10.1090/S0002-9947-00-02491-0. Google Scholar

[14]

G. Levi, Generalization of a spatial angle theorem,, (Russian) \emph{Translated from the English by Ju. V. Egorov, 26 (1971), 199. Google Scholar

[15]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). Google Scholar

[16]

N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation,, (Russian) \emph{Sibirsk. Mat. $\breveZ$}, 17 (1976), 290. Google Scholar

[17]

K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature,, \emph{Comm. Pure Appl. Math.}, 38 (1985), 867. doi: 10.1002/cpa.3160380615. Google Scholar

[18]

K. Tso, On an Aleksandrov-Bakelman type maximum principle for second-order parabolic equations,, \emph{Comm. Partial Differential Equations}, 10 (1985), 543. doi: 10.1080/03605308508820388. Google Scholar

[19]

R. H. Wang and G. L. Wang, On the existence, uniqueness and regularity of viscosity solution for the first initial boundary value problem to parabolic Monge-Ampère equations,, \emph{Northeast Math. J.}, 8 (1992), 417. Google Scholar

[20]

R. H. Wang and G. L. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation,, \emph{J. Partial Differential Equations}, 6 (1993), 237. Google Scholar

[21]

J. G. Xiong and J. G. Bao, On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations,, \emph{J. Differential Equations}, 250 (2011), 367. doi: 10.1016/j.jde.2010.08.024. Google Scholar

[22]

Y. Zhan, Viscosity Solutions of Nonlinear Degenerate Parabolic Equations and Several Applications,, Ph.D thesis, (2000). Google Scholar

[1]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[2]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[3]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[4]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[5]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[6]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[7]

Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002

[8]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[9]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[10]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[11]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[12]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[13]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[14]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[15]

Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012

[16]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[17]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[18]

Yangrong Li, Renhai Wang, Lianbing She. Backward controllability of pullback trajectory attractors with applications to multi-valued Jeffreys-Oldroyd equations. Evolution Equations & Control Theory, 2018, 7 (4) : 617-637. doi: 10.3934/eect.2018030

[19]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[20]

Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]