March  2013, 12(2): 867-879. doi: 10.3934/cpaa.2013.12.867

Generalized Schrödinger-Poisson type systems

1. 

Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, I-85100 Potenza, Italy

2. 

Dipartimento di Matematica, Politecnico di Bari, Via Orabona, 4, I-70125 Bari

3. 

Dipartimento di Matematica, Universita degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy

Received  September 2011 Revised  June 2012 Published  September 2012

In this paper we study the boundary value problem \begin{eqnarray*} -\Delta u+ \varepsilon q\Phi f(u)=\eta|u|^{p-1}u \quad in \quad \Omega, \\ - \Delta \Phi=2 qF(u) \quad in \quad \Omega, \\ u=\Phi=0 \quad on \quad \partial \Omega, \end{eqnarray*} where $\Omega \subset R^3$ is a smooth bounded domain, $1 < p < 5$, $\varepsilon,\eta= \pm 1$, $q>0$, $f: R\to R$ is a continuous function and $F$ is the primitive of $f$ such that $F(0)=0.$ We provide existence and multiplicity results assuming on $f$ a subcritical growth condition. The critical case is also considered and existence and nonexistence results are proved.
Citation: Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867
References:
[1]

A. Ambrosetti, On Schrödinger-Poisson systems,, Milan J. Math., 76 (2008), 257. doi: 10.1007/s00032-008-0094-z. Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Functional Analysis, 14 (1973), 349. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[3]

A. Azzollini and P. d'Avenia, On a system involving a critically growing nonlinearity,, J. Math. Anal. Appl., 387 (2012), 433. doi: 10.1016/j.jmaa.2011.09.012. Google Scholar

[4]

A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 27 (2010), 779. doi: 10.1016/j.anihpc.2009.11.012. Google Scholar

[5]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations,, Topol. Methods Nonlinear Anal., 11 (1998), 283. Google Scholar

[6]

M. Berti and P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities,, Comm. Math. Phys., 243 (2003), 315. doi: 10.1007/s00220-003-0972-8. Google Scholar

[7]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations,, Adv. Nonlinear Stud., 4 (2004), 307. Google Scholar

[8]

P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems,, Nonlinear Anal., 71 (2009). doi: 10.1016/j.na.2009.02.111. Google Scholar

[9]

P. d'Avenia, L. Pisani and G. Siciliano, Klein-Gordon-Maxwell systems in a bounded domain,, Discrete Contin. Dyn. Syst., 26 (2010), 135. doi: 10.3934/dcds.2010.26.135. Google Scholar

[10]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations,, Adv. Differential Equations, 11 (2006), 813. Google Scholar

[11]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation,, Adv. Nonlinear Stud., 7 (2007), 403. Google Scholar

[12]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation,, Studies in Appl. Math., 57 (): 93. Google Scholar

[13]

P. L. Lions, The Choquard equation and related questions,, Nonlinear Anal., 4 (1980), 1063. doi: 10.1016/0362-546X(80)90016-4. Google Scholar

[14]

D. Mugnai, The Schrödinger-Poisson system with positive potential,, Comm. Partial Differential Equations, 36 (2011), 1099. doi: 10.1080/03605302.2011.558551. Google Scholar

[15]

L. Pisani and G. Siciliano, Neumann condition in the Schrödinger-Maxwell system,, Topol. Methods Nonlinear Anal., 29 (2007), 251. Google Scholar

[16]

L. Pisani and G. Siciliano, Note on a Schrödinger-Poisson system in a bounded domain,, Appl. Math. Lett., 21 (2008), 521. doi: 10.1016/j.aml.2007.06.005. Google Scholar

[17]

S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\l f(u)=0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36. Google Scholar

[18]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term,, J. Funct. Anal., 237 (2006), 655. doi: 10.1016/j.jfa.2006.04.005. Google Scholar

[19]

D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains,, Adv. Nonlinear Stud., 8 (2008), 179. Google Scholar

[20]

G. Siciliano, Multiple positive solutions for a Schrödinger-Poisson-Slater system,, J. Math. Anal. Appl., 365 (2010), 288. doi: 10.1016/j.jmaa.2009.10.061. Google Scholar

[21]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,'', 4$^{th}$ edition, (2008). Google Scholar

show all references

References:
[1]

A. Ambrosetti, On Schrödinger-Poisson systems,, Milan J. Math., 76 (2008), 257. doi: 10.1007/s00032-008-0094-z. Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Functional Analysis, 14 (1973), 349. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[3]

A. Azzollini and P. d'Avenia, On a system involving a critically growing nonlinearity,, J. Math. Anal. Appl., 387 (2012), 433. doi: 10.1016/j.jmaa.2011.09.012. Google Scholar

[4]

A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 27 (2010), 779. doi: 10.1016/j.anihpc.2009.11.012. Google Scholar

[5]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations,, Topol. Methods Nonlinear Anal., 11 (1998), 283. Google Scholar

[6]

M. Berti and P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities,, Comm. Math. Phys., 243 (2003), 315. doi: 10.1007/s00220-003-0972-8. Google Scholar

[7]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations,, Adv. Nonlinear Stud., 4 (2004), 307. Google Scholar

[8]

P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems,, Nonlinear Anal., 71 (2009). doi: 10.1016/j.na.2009.02.111. Google Scholar

[9]

P. d'Avenia, L. Pisani and G. Siciliano, Klein-Gordon-Maxwell systems in a bounded domain,, Discrete Contin. Dyn. Syst., 26 (2010), 135. doi: 10.3934/dcds.2010.26.135. Google Scholar

[10]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations,, Adv. Differential Equations, 11 (2006), 813. Google Scholar

[11]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation,, Adv. Nonlinear Stud., 7 (2007), 403. Google Scholar

[12]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation,, Studies in Appl. Math., 57 (): 93. Google Scholar

[13]

P. L. Lions, The Choquard equation and related questions,, Nonlinear Anal., 4 (1980), 1063. doi: 10.1016/0362-546X(80)90016-4. Google Scholar

[14]

D. Mugnai, The Schrödinger-Poisson system with positive potential,, Comm. Partial Differential Equations, 36 (2011), 1099. doi: 10.1080/03605302.2011.558551. Google Scholar

[15]

L. Pisani and G. Siciliano, Neumann condition in the Schrödinger-Maxwell system,, Topol. Methods Nonlinear Anal., 29 (2007), 251. Google Scholar

[16]

L. Pisani and G. Siciliano, Note on a Schrödinger-Poisson system in a bounded domain,, Appl. Math. Lett., 21 (2008), 521. doi: 10.1016/j.aml.2007.06.005. Google Scholar

[17]

S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\l f(u)=0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36. Google Scholar

[18]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term,, J. Funct. Anal., 237 (2006), 655. doi: 10.1016/j.jfa.2006.04.005. Google Scholar

[19]

D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains,, Adv. Nonlinear Stud., 8 (2008), 179. Google Scholar

[20]

G. Siciliano, Multiple positive solutions for a Schrödinger-Poisson-Slater system,, J. Math. Anal. Appl., 365 (2010), 288. doi: 10.1016/j.jmaa.2009.10.061. Google Scholar

[21]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,'', 4$^{th}$ edition, (2008). Google Scholar

[1]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[2]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[3]

Marius Ghergu, Gurpreet Singh. On a class of mixed Choquard-Schrödinger-Poisson systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 297-309. doi: 10.3934/dcdss.2019021

[4]

Pierre-Damien Thizy. Schrödinger-Poisson systems in $4$-dimensional closed manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2257-2284. doi: 10.3934/dcds.2016.36.2257

[5]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[6]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

[7]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[8]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[9]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[10]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[11]

Dengfeng Lü. Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 605-626. doi: 10.3934/cpaa.2018033

[12]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[13]

Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011

[14]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[15]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[16]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[17]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[18]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[19]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[20]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (11)

[Back to Top]