March  2013, 12(2): 755-769. doi: 10.3934/cpaa.2013.12.755

The Riemann problem of conservation laws in magnetogasdynamics

1. 

Department of Mathematics, Shanghai University, Shanghai, 200444, China

Received  July 2011 Revised  July 2012 Published  September 2012

In this paper, we study the Riemann problem for a simplified model of one dimensional ideal gas in magnetogasdynamics. By using the characteristic analysis method, we prove the global existence of solutions to the Riemann problem constructively under the Lax entropy condition. The image of contact discontinuity in magnetogasdynamics is a curve with $u=Const.$ in the $(\tau,p,u)$ space. Its projection on the $(p,u)$ plane is a straight line that parallels to the $p$-axis. In contrast with the problem in gas dynamics, the result causes more complicated and difficult than that in gas dynamics.
Citation: Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755
References:
[1]

W. R. Hu, "Universe Magnetogasdynamics" (in Chinese),, Science Press, (1987). Google Scholar

[2]

D. Q. Li and T. H. Qin, "Physics and Partial Differential Equations" (in Chinese),, Higher Education Press, (2005). Google Scholar

[3]

H. Cabannes, "Theoretical Magnetofluid Dynamics, in: Applid Mathematics and Mechanics,", Academic Press, (1970). Google Scholar

[4]

R. Gundersen, "Linearized Analysis of One-dimensional Magnetohydrodynamic Flows,", Springer-Verlag, (1964). Google Scholar

[5]

R. S. Myong and P. L. Roe, Shock waves and rarefaction waves in magnetohydrodynamics part 1. a model system,, J. Plasma Phys., 58 (1997), 485. doi: 10.1017/S002237789700593X. Google Scholar

[6]

R. S. Myong and P. L. Roe, Shock waves and rarefaction waves in magnetohydrodynamics part 2. the MHD system,, J. Plasma Phys., 58 (1997), 521. doi: 10.1017/S0022377897005941. Google Scholar

[7]

M. Torrilhon, "Exact Solver and Uniqueness Conditions for Riemann Problem of Ideal Magnetohydrodynamics,", Seminar f\, (2002). Google Scholar

[8]

T. R. Sekhar and V. D. Sharma, Riemann problem and elementary wave interactions in isentropic magnetogasdynamics,, Nonlinear Analysis: Real World Applications, 11 (2010), 619. doi: 10.1016/j.nonrwa.2008.10.036. Google Scholar

[9]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves,", Intersience Publisher, (1999). Google Scholar

[10]

P. D. Lax, Hyperbolic system of conservation laws II,, Comm. Pure Appl. Math., 10 (1957), 537. doi: 10.1002/cpa.3160100406. Google Scholar

[11]

J. Glimm, Solutions in the large for nonlinear hyperbolic system of equations,, Comm. Pure Appl. Math., 18 (1963), 697. doi: 10.1002/cpa.3160180408. Google Scholar

[12]

T. P. Liu, Existence and uniqueness theorems for Riemann problems,, Trans. Amer. Math. Soc., 212 (1975), 375. doi: 10.1090/S0002-9947-1975-0380135-2. Google Scholar

[13]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman, (1989). Google Scholar

[14]

J. Smollor, "Shock Waves and Reaction Diffusion Equations,", Springer Verlag, (1994). Google Scholar

[15]

Y. B. Hu and W. C. Sheng, Elementary waves of conservation laws in magnetogasdynamics (in Chinese),, Commun. Appl. Math. Comput., 23 (2009), 49. Google Scholar

show all references

References:
[1]

W. R. Hu, "Universe Magnetogasdynamics" (in Chinese),, Science Press, (1987). Google Scholar

[2]

D. Q. Li and T. H. Qin, "Physics and Partial Differential Equations" (in Chinese),, Higher Education Press, (2005). Google Scholar

[3]

H. Cabannes, "Theoretical Magnetofluid Dynamics, in: Applid Mathematics and Mechanics,", Academic Press, (1970). Google Scholar

[4]

R. Gundersen, "Linearized Analysis of One-dimensional Magnetohydrodynamic Flows,", Springer-Verlag, (1964). Google Scholar

[5]

R. S. Myong and P. L. Roe, Shock waves and rarefaction waves in magnetohydrodynamics part 1. a model system,, J. Plasma Phys., 58 (1997), 485. doi: 10.1017/S002237789700593X. Google Scholar

[6]

R. S. Myong and P. L. Roe, Shock waves and rarefaction waves in magnetohydrodynamics part 2. the MHD system,, J. Plasma Phys., 58 (1997), 521. doi: 10.1017/S0022377897005941. Google Scholar

[7]

M. Torrilhon, "Exact Solver and Uniqueness Conditions for Riemann Problem of Ideal Magnetohydrodynamics,", Seminar f\, (2002). Google Scholar

[8]

T. R. Sekhar and V. D. Sharma, Riemann problem and elementary wave interactions in isentropic magnetogasdynamics,, Nonlinear Analysis: Real World Applications, 11 (2010), 619. doi: 10.1016/j.nonrwa.2008.10.036. Google Scholar

[9]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves,", Intersience Publisher, (1999). Google Scholar

[10]

P. D. Lax, Hyperbolic system of conservation laws II,, Comm. Pure Appl. Math., 10 (1957), 537. doi: 10.1002/cpa.3160100406. Google Scholar

[11]

J. Glimm, Solutions in the large for nonlinear hyperbolic system of equations,, Comm. Pure Appl. Math., 18 (1963), 697. doi: 10.1002/cpa.3160180408. Google Scholar

[12]

T. P. Liu, Existence and uniqueness theorems for Riemann problems,, Trans. Amer. Math. Soc., 212 (1975), 375. doi: 10.1090/S0002-9947-1975-0380135-2. Google Scholar

[13]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman, (1989). Google Scholar

[14]

J. Smollor, "Shock Waves and Reaction Diffusion Equations,", Springer Verlag, (1994). Google Scholar

[15]

Y. B. Hu and W. C. Sheng, Elementary waves of conservation laws in magnetogasdynamics (in Chinese),, Commun. Appl. Math. Comput., 23 (2009), 49. Google Scholar

[1]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[2]

Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6257-6289. doi: 10.3934/dcds.2017271

[3]

Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075

[4]

Cristóbal Rodero, J. Alberto Conejero, Ignacio García-Fernández. Shock wave formation in compliant arteries. Evolution Equations & Control Theory, 2019, 8 (1) : 221-230. doi: 10.3934/eect.2019012

[5]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985

[6]

Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2018, 17 (1) : 127-142. doi: 10.3934/cpaa.2018008

[7]

Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 637-679. doi: 10.3934/krm.2019025

[8]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555

[9]

Haiyan Yin. The stability of contact discontinuity for compressible planar magnetohydrodynamics. Kinetic & Related Models, 2017, 10 (4) : 1235-1253. doi: 10.3934/krm.2017047

[10]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419

[11]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure & Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[12]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[13]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[14]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[15]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[16]

Qin Wang, Kyungwoo Song. The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1661-1675. doi: 10.3934/dcds.2016.36.1661

[17]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[18]

Jiequan Li, Mária Lukáčová - MedviĎová, Gerald Warnecke. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 559-576. doi: 10.3934/dcds.2003.9.559

[19]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[20]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]