November  2013, 12(6): 3047-3071. doi: 10.3934/cpaa.2013.12.3047

Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results

1. 

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Caixa postal 668, 13560-970 São Carlos, São Paulo, Brazil

2. 

BCAM Basque Center for Applied Mathematics, Mazarredo 14, E-48009 Bilbao, Basque Country, Spain

Received  October 2012 Revised  February 2013 Published  May 2013

We construct exponential pullback attractors for time continuous asymptotically compact evolution processes in Banach spaces and derive estimates on the fractal dimension of the attractors. We also discuss the corresponding results for autonomous processes.
Citation: Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3047-3071. doi: 10.3934/cpaa.2013.12.3047
References:
[1]

T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Anal., 72 (2010), 1967. doi: 10.1016/j.na.2009.09.037. Google Scholar

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, "Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,", Appl. Math. Sci., 182 (2012). Google Scholar

[3]

J. W. Cholewa, R. Czaja and G. Mola, Remarks on the fractal dimension of bi-space global and exponential attractors,, Boll. Unione Mat. Ital., 1 (2008), 121. Google Scholar

[4]

D. N. Cheban, P. E. Kloeden and B. Schmalfuss, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems,, Nonlinear Dyn. and Syst. Theory, 2 (2002), 9. Google Scholar

[5]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics,", Amer. Math. Soc., (2002). Google Scholar

[6]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations,, J. Math. Anal. Appl., 381 (2011), 748. doi: 10.1016/j.jmaa.2011.03.053. Google Scholar

[7]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations,", Research in Applied Mathematics, (1994). Google Scholar

[8]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R ^3$,, C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713. doi: 10.1016/S0764-4442(00)00259-7. Google Scholar

[9]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems,, Proc. R. Soc. Edinburgh Sect.A, 135A (2005), 703. doi: 10.1017/S030821050000408X. Google Scholar

[10]

M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipative systems,, J. Math. Soc. Japan, 63 (2011), 647. doi: 10.2969/jmsj/06320647. Google Scholar

[11]

J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors,, Discrete Contin. Dyn. Syst., 26 (2010), 1329. doi: 10.3934/dcds.2010.26.1329. Google Scholar

[12]

J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations,, Stoch. Dyn., 4 (2004), 385. doi: 10.1142/S0219493704001127. Google Scholar

[13]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065. Google Scholar

[14]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, (1997). Google Scholar

show all references

References:
[1]

T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Anal., 72 (2010), 1967. doi: 10.1016/j.na.2009.09.037. Google Scholar

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, "Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,", Appl. Math. Sci., 182 (2012). Google Scholar

[3]

J. W. Cholewa, R. Czaja and G. Mola, Remarks on the fractal dimension of bi-space global and exponential attractors,, Boll. Unione Mat. Ital., 1 (2008), 121. Google Scholar

[4]

D. N. Cheban, P. E. Kloeden and B. Schmalfuss, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems,, Nonlinear Dyn. and Syst. Theory, 2 (2002), 9. Google Scholar

[5]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics,", Amer. Math. Soc., (2002). Google Scholar

[6]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations,, J. Math. Anal. Appl., 381 (2011), 748. doi: 10.1016/j.jmaa.2011.03.053. Google Scholar

[7]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations,", Research in Applied Mathematics, (1994). Google Scholar

[8]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R ^3$,, C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713. doi: 10.1016/S0764-4442(00)00259-7. Google Scholar

[9]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems,, Proc. R. Soc. Edinburgh Sect.A, 135A (2005), 703. doi: 10.1017/S030821050000408X. Google Scholar

[10]

M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipative systems,, J. Math. Soc. Japan, 63 (2011), 647. doi: 10.2969/jmsj/06320647. Google Scholar

[11]

J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors,, Discrete Contin. Dyn. Syst., 26 (2010), 1329. doi: 10.3934/dcds.2010.26.1329. Google Scholar

[12]

J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations,, Stoch. Dyn., 4 (2004), 385. doi: 10.1142/S0219493704001127. Google Scholar

[13]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065. Google Scholar

[14]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, (1997). Google Scholar

[1]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[2]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[3]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[4]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[5]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2019172

[6]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[7]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[8]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[9]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[10]

Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure & Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885

[11]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

[12]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[13]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[14]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

[15]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[16]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[17]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[18]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[19]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[20]

Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (8)

[Back to Top]