November  2013, 12(6): 2889-2922. doi: 10.3934/cpaa.2013.12.2889

Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems

1. 

American Institute of Mathematical Sciences, P.O. Box 2604, Springfield, MO 65801

2. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  June 2012 Revised  February 2013 Published  May 2013

We consider nonlinear Neumann and Dirichlet problems driven by a nonhomogeneous differential operator and a Caratheodory reaction. Our framework incorporates $p$-Laplacian equations and equations with the $(p,q)$-differential operator and with the generalized $p$-mean curvature operator. Using variational methods, together with truncation and comparison techniques and Morse theory, we prove multiplicity theorems, producing three, five or six nontrivial smooth solutions, all with sign information.
Citation: Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, The spectrum and an index formula for the Neumann $p$-Laplacian and multiple solutions for problems with a crossing nonlinearity,, Discrete Cont Dyn Systems, 25 (2009), 431. Google Scholar

[2]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, On a $p$-superlinear Neumann $p$-Laplacian equation, Topol., Methods Nonlin. Anal., 34 (2009), 111. Google Scholar

[3]

A. Allendes and A. Quaas, Multiplicity results for extremal operators through bifurcation,, Discrete Cont Dyn Systems, 29 (2011), 51. Google Scholar

[4]

D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator,, Comm. Part. Diff. Equs., 31 (2006), 849. doi: 10.1080/03605300500394447. Google Scholar

[5]

V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions,, Arch. Rational Mech. Anal., 154 (2000), 297. doi: 10.1007/s002050000101. Google Scholar

[6]

R. Benguria, H. Brezis and E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules,, Comm. Math. Physics, 79 (1981), 167. doi: 10.1007/BF01942059. Google Scholar

[7]

H. Brezis and L. Nirenberg, $H^1$ versus $C^1$ local minimizers,, CRAS Paris t., 317 (1993), 465. Google Scholar

[8]

S. Cano-Casanova, Coercivity of elliptic mixed boundary value problems in annulus of $\mathbbR^N$,, Discrete and Continuous Dynamical Systems, 32 (2012), 3819. doi: 10.3934/dcds.2012.32.3819. Google Scholar

[9]

K. C. Chang, "Methods of Nonilnear Analysis,", Springer, (2005). Google Scholar

[10]

S. Cingolani and M. Degiovanni, Nontrivial solutions for $p$-Laplacian equations with right hand side having $p$-linear growth,, Comm. Part. Diff. Equas., 30 (2005), 1191. doi: 10.1080/03605300500257594. Google Scholar

[11]

S. Cingolani and G. Vannella, Critical groups computations on a class of Sobolev Banach spaces via Morse index,, ann. Inst. H. Poincare-AN, 20 (2003), 271. Google Scholar

[12]

S. Cingolani and G. Vannella, Marino-Prodi perturbation type results and Morse indices of minimaz critical points for a class of functionals in Banach spaces,, Annali di Mat. Pura Appl., 186 (2007), 155. doi: 10.1007/s10231-005-0176-2. Google Scholar

[13]

P. Clement, M.Garcia Huidobro, R. Manasevich and K. Schmitt, Mountain pass solutions for quasilinear elliptic equations,, Calc. Var., 11 (2000), 33. doi: 10.1007/s005260050002. Google Scholar

[14]

D. Costa and C. Magalhaes, Existence results for perturbations of the $p$-Laplacian,, Nonlinear Anal., 24 (1995), 409. doi: 10.1016/0362-546X(94)E0046-J. Google Scholar

[15]

M. Cuesta, D. deFigueiredo and J. P. Gossez, The beginning of the Fu$\brevec$ik spectrum for the $p$-Laplacian,, J. Diff. Equas., 159 (1999), 212. doi: 10.1006/jdeq.1999.3645. Google Scholar

[16]

M. Cuesta and P. Takac, A strong comparison principle for positive solutions of degenerate elliptic equations,, Diff. Integ. Equas., 13 (2000), 721. Google Scholar

[17]

N. Dancer, On domain perturbation for super-linear Neumann problems and a question of Y. Lou, W-M Ni and L. Su,, Discrete Cont Dyn Systems, 32 (2012), 3861. Google Scholar

[18]

P. De Napoli and M. C. Mariani, Mountain pass solutions to equations of $p$-Laplacian type,, Nonlinear Anal., (2003), 1205. doi: 10.1016/S0362-546X(03)00105-6. Google Scholar

[19]

M. Degiovanni and M. Scaglia, A variational approach to semilinear elliptic equations with measure data,, Discrete and Continuous Dynamical Systems, 31 (2011), 1233. doi: 10.3934/dcds.2011.31.1233. Google Scholar

[20]

Y. Deng, S. Peng and L. Wang, Existence of multiple solutions for a nonhomogeneous semilinear elliptic equatio involving critical exponent,, Discrete Contin. Dynam. Systems, 32 (2012), 795. Google Scholar

[21]

C. H. Derrick, Comments on nonlinear wave equations as model elementary particles,, J. Math. Phys., 5 (1964), 1252. doi: 10.1063/1.1704233. Google Scholar

[22]

J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pour certaines equations elliptiques quasilineaires,, CRAS, 305 (1987), 521. Google Scholar

[23]

N. Dunford and J.Schwartz, "Linear Operators I,", Wiley-Interscience, (). Google Scholar

[24]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems,, Elec. J. Diff. Equas., 8 (2002), 1. Google Scholar

[25]

D. deFigueiredo, Positive solutions of semilinear elliptic problems,, in, (1982), 34. Google Scholar

[26]

M. Filippakis, A. Kristaly and N. S. Papageorgiou, Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation,, Discrete Cont Dyn Systems, 24 (2009), 405. doi: 10.3934/dcds.2009.24.405. Google Scholar

[27]

J. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and globla multiplicity for some quasilinear elliptic equations,, Comm. Contemp. Math., 2 (2000), 385. doi: 10.1142/S0219199700000190. Google Scholar

[28]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman & Hall/CRC, (2006). Google Scholar

[29]

L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations,, Adv. Nonlin. Studies, 8 (2008), 843. Google Scholar

[30]

L. Gasinski and N. S. Papageorgiou, Multiple solutions for nonlinear coersive problems with a nonhomogeneous differential operator and a nonsmooth potential,, Set Valued Var. Anal., 20 (2012), 417. doi: 10.1007/s11228-011-0198-4. Google Scholar

[31]

D. Gilberg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[32]

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlin. Anal., 13 (1989), 879. doi: 10.1016/0362-546X(89)90020-5. Google Scholar

[33]

Z. Guo and Z. Liu, Perturbed elliptic equations with oscillatory nonlinearities,, Discrete Cont Dyn Systems, 32 (2012), 3567. doi: 10.3934/dcds.2012.32.3567. Google Scholar

[34]

Z. Guo, Z. Liu, J. Wei and F. Zhou, Bifurcations of some elliptic problems with a singular nonlinearity via Morse index,, Comm. Pure. Appl. Anal., 10 (2011), 507. doi: 10.3934/cpaa.2011.10.507. Google Scholar

[35]

Shouchuan Hu and N. S. Papageorgiou, Positive solutions for nonlinear hemivariational inequalities,, J. Math. Anal. Appl., 310 (2005), 161. doi: 10.1016/j.jmaa.2005.01.051. Google Scholar

[36]

Shouchuan Hu and N. S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous differential operator,, Comm. Pure Appl. Anal., 9 (2010), 1801. Google Scholar

[37]

Shouchuan Hu and N. S. Papageorgiou, Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities,, Comm. Pure Applied Anal., 11 (2012), 2005. doi: 10.3934/cpaa.2012.11.2005. Google Scholar

[38]

J. Garcia Melian, J. Rossi and J. Sabina de Lis, A convex-concave problem with a parameter on the boundary condition,, Discrete Contin. Dynam. Systems, 32 (2012), 1095. Google Scholar

[39]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and applications to Landesmann-Lazer type problems in $\rn$,, Proc. Royal Soc. Edinburgh, 129A (1999), 767. Google Scholar

[40]

A. Kristaly, M. Mihaileseu and V. Radulescu, Two nontrivial solutions for a nonhomogeneous Neumann problem: an Orlicz-Sobolev space setting,, Proc. Royal. Soc. Edinburgh, 139A (2009), 367. doi: 10.1017/S030821050700025X. Google Scholar

[41]

S. Kyritsi, D. O'Regan and N. S. Papageorgiou, Multiple solutions for resonant hemivariational inequalities via minimax methods,, Adv. Nonlin. Studies, 9 (2009), 453. Google Scholar

[42]

S. Kyritsi and N. S. Papageorgiou, Multiple solutions for nonlinear elliptic equations with asymmetric reaction term,, Discrete Cont Dyn Systems, 33 (2013), 2469. Google Scholar

[43]

O. A. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations,", Academic Press, (1968). Google Scholar

[44]

G. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations,, Comm. Part. Diff. Equas., 16 (1991), 311. doi: 10.1080/03605309108820761. Google Scholar

[45]

S. Li, S. Wu and H. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities,, J. Diff. Equas., 185 (2002), 200. doi: 10.1006/jdeq.2001.4167. Google Scholar

[46]

M. Mihailescu, Existence and multiplicity of weak solutions for a class of degenerate nonlinear ellipitc equations,, Boundary Value Problems, (2006), 1. Google Scholar

[47]

M. Mihailescu and V. Radulescu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting,, J. Math. Anal. Appl., 330 (2007), 416. doi: 10.1016/j.jmaa.2006.07.082. Google Scholar

[48]

M. L. Miotto, Multiple solutions for elliptic problems in $R^N$ with critical Spbolev exponent and weight function,, Comm. Pure Appl. Anal., 9 (2010), 233. doi: 10.3934/cpaa.2010.9.233. Google Scholar

[49]

S. Miyajima, D. Motreanu and M. Tanaka, Multiple existence results of solutions for Neumann problems via super- and sub-solutions,, J. Functional Anal., 262 (2012), 1921. doi: 10.1016/j.jfa.2011.11.028. Google Scholar

[50]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, On $p$-Laplace equations with concave terms and asymmetric nonlinearities,, Proc. Royal Soc. Edinburgh, 141A (2011), 171. doi: 10.1017/S0308210509001656. Google Scholar

[51]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems,, Annali Scuola Normale Sup. Pisa, (2011), 729. Google Scholar

[52]

D. Motreanu, D. O'Regan and N. S. Papageorgiou, A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems,, Comm. Pure Appl. Anal., 10 (2011), 1791. doi: 10.3934/cpaa.2011.10.1791. Google Scholar

[53]

D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems,, J. Diff. Equas., 232 (2007), 1. doi: 10.1016/j.jde.2006.09.008. Google Scholar

[54]

D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator,, Proc. Amer. Math. Soc., 139 (2011), 3527. doi: 10.1090/S0002-9939-2011-10884-0. Google Scholar

[55]

N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis,", Springer, (2009). Google Scholar

[56]

N. S. Papageorgiou and E. M. Rocha, On nonlinear parametric problems for $p$-Laplacian like operators,, RACSAM, 103 (2009), 177. doi: 10.1007/BF03191850. Google Scholar

[57]

N. S. Papageorgiou, E. M. Rocha and V. Staicu, A multiplicity theorem for hemivariational inequalities with a $p$-Laplacian like differential operator,, Nonlin. Anal., 69 (2008), 1150. doi: 10.1016/j.na.2007.06.023. Google Scholar

[58]

P. Pucci and J. Serrin, The strong maximum principle revisited,, J. Diff. Equas., 196 (2004), 1. Google Scholar

[59]

P. Pucci and J. Serrin, "The Maximum Principle,", Birkhauser, (2007). doi: 10.1016/j.jde.2004.09.002. Google Scholar

[60]

J. M. Rakotoson, Generalized eigenvalue problem for totally discontinuous operator,, Discrete Contin. Dynam. Systems, 28 (2010), 343. doi: 10.3934/dcds.2010.28.343. Google Scholar

[61]

P. Roselli and B. Sciunzi, A strong comparison principle for the $p$-Laplacian,, Proc. Amer. Math. Soc., 135 (2007), 3217. doi: 10.1090/S0002-9939-07-08847-8. Google Scholar

[62]

M. Sun, Multiplicity of solutions for a class of quasilinear elliptic equation at resonance,, J. Math. Anal. Appl., 386 (2012), 661. doi: 10.1016/j.jmaa.2011.08.030. Google Scholar

[63]

J. Vazquez, A strong maximum principle for some quailinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191. doi: 10.1007/BF01449041. Google Scholar

[64]

R. Zhang, J. Chen and F. Zhan, Multiple solutions for superlinear elliptic systems of Hamiltonian type,, Discrete Cont Dyn Systems, 30 (2011), 1249. doi: 10.3934/dcds.2011.30.1249. Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, The spectrum and an index formula for the Neumann $p$-Laplacian and multiple solutions for problems with a crossing nonlinearity,, Discrete Cont Dyn Systems, 25 (2009), 431. Google Scholar

[2]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, On a $p$-superlinear Neumann $p$-Laplacian equation, Topol., Methods Nonlin. Anal., 34 (2009), 111. Google Scholar

[3]

A. Allendes and A. Quaas, Multiplicity results for extremal operators through bifurcation,, Discrete Cont Dyn Systems, 29 (2011), 51. Google Scholar

[4]

D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator,, Comm. Part. Diff. Equs., 31 (2006), 849. doi: 10.1080/03605300500394447. Google Scholar

[5]

V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions,, Arch. Rational Mech. Anal., 154 (2000), 297. doi: 10.1007/s002050000101. Google Scholar

[6]

R. Benguria, H. Brezis and E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules,, Comm. Math. Physics, 79 (1981), 167. doi: 10.1007/BF01942059. Google Scholar

[7]

H. Brezis and L. Nirenberg, $H^1$ versus $C^1$ local minimizers,, CRAS Paris t., 317 (1993), 465. Google Scholar

[8]

S. Cano-Casanova, Coercivity of elliptic mixed boundary value problems in annulus of $\mathbbR^N$,, Discrete and Continuous Dynamical Systems, 32 (2012), 3819. doi: 10.3934/dcds.2012.32.3819. Google Scholar

[9]

K. C. Chang, "Methods of Nonilnear Analysis,", Springer, (2005). Google Scholar

[10]

S. Cingolani and M. Degiovanni, Nontrivial solutions for $p$-Laplacian equations with right hand side having $p$-linear growth,, Comm. Part. Diff. Equas., 30 (2005), 1191. doi: 10.1080/03605300500257594. Google Scholar

[11]

S. Cingolani and G. Vannella, Critical groups computations on a class of Sobolev Banach spaces via Morse index,, ann. Inst. H. Poincare-AN, 20 (2003), 271. Google Scholar

[12]

S. Cingolani and G. Vannella, Marino-Prodi perturbation type results and Morse indices of minimaz critical points for a class of functionals in Banach spaces,, Annali di Mat. Pura Appl., 186 (2007), 155. doi: 10.1007/s10231-005-0176-2. Google Scholar

[13]

P. Clement, M.Garcia Huidobro, R. Manasevich and K. Schmitt, Mountain pass solutions for quasilinear elliptic equations,, Calc. Var., 11 (2000), 33. doi: 10.1007/s005260050002. Google Scholar

[14]

D. Costa and C. Magalhaes, Existence results for perturbations of the $p$-Laplacian,, Nonlinear Anal., 24 (1995), 409. doi: 10.1016/0362-546X(94)E0046-J. Google Scholar

[15]

M. Cuesta, D. deFigueiredo and J. P. Gossez, The beginning of the Fu$\brevec$ik spectrum for the $p$-Laplacian,, J. Diff. Equas., 159 (1999), 212. doi: 10.1006/jdeq.1999.3645. Google Scholar

[16]

M. Cuesta and P. Takac, A strong comparison principle for positive solutions of degenerate elliptic equations,, Diff. Integ. Equas., 13 (2000), 721. Google Scholar

[17]

N. Dancer, On domain perturbation for super-linear Neumann problems and a question of Y. Lou, W-M Ni and L. Su,, Discrete Cont Dyn Systems, 32 (2012), 3861. Google Scholar

[18]

P. De Napoli and M. C. Mariani, Mountain pass solutions to equations of $p$-Laplacian type,, Nonlinear Anal., (2003), 1205. doi: 10.1016/S0362-546X(03)00105-6. Google Scholar

[19]

M. Degiovanni and M. Scaglia, A variational approach to semilinear elliptic equations with measure data,, Discrete and Continuous Dynamical Systems, 31 (2011), 1233. doi: 10.3934/dcds.2011.31.1233. Google Scholar

[20]

Y. Deng, S. Peng and L. Wang, Existence of multiple solutions for a nonhomogeneous semilinear elliptic equatio involving critical exponent,, Discrete Contin. Dynam. Systems, 32 (2012), 795. Google Scholar

[21]

C. H. Derrick, Comments on nonlinear wave equations as model elementary particles,, J. Math. Phys., 5 (1964), 1252. doi: 10.1063/1.1704233. Google Scholar

[22]

J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pour certaines equations elliptiques quasilineaires,, CRAS, 305 (1987), 521. Google Scholar

[23]

N. Dunford and J.Schwartz, "Linear Operators I,", Wiley-Interscience, (). Google Scholar

[24]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems,, Elec. J. Diff. Equas., 8 (2002), 1. Google Scholar

[25]

D. deFigueiredo, Positive solutions of semilinear elliptic problems,, in, (1982), 34. Google Scholar

[26]

M. Filippakis, A. Kristaly and N. S. Papageorgiou, Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation,, Discrete Cont Dyn Systems, 24 (2009), 405. doi: 10.3934/dcds.2009.24.405. Google Scholar

[27]

J. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and globla multiplicity for some quasilinear elliptic equations,, Comm. Contemp. Math., 2 (2000), 385. doi: 10.1142/S0219199700000190. Google Scholar

[28]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman & Hall/CRC, (2006). Google Scholar

[29]

L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations,, Adv. Nonlin. Studies, 8 (2008), 843. Google Scholar

[30]

L. Gasinski and N. S. Papageorgiou, Multiple solutions for nonlinear coersive problems with a nonhomogeneous differential operator and a nonsmooth potential,, Set Valued Var. Anal., 20 (2012), 417. doi: 10.1007/s11228-011-0198-4. Google Scholar

[31]

D. Gilberg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[32]

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlin. Anal., 13 (1989), 879. doi: 10.1016/0362-546X(89)90020-5. Google Scholar

[33]

Z. Guo and Z. Liu, Perturbed elliptic equations with oscillatory nonlinearities,, Discrete Cont Dyn Systems, 32 (2012), 3567. doi: 10.3934/dcds.2012.32.3567. Google Scholar

[34]

Z. Guo, Z. Liu, J. Wei and F. Zhou, Bifurcations of some elliptic problems with a singular nonlinearity via Morse index,, Comm. Pure. Appl. Anal., 10 (2011), 507. doi: 10.3934/cpaa.2011.10.507. Google Scholar

[35]

Shouchuan Hu and N. S. Papageorgiou, Positive solutions for nonlinear hemivariational inequalities,, J. Math. Anal. Appl., 310 (2005), 161. doi: 10.1016/j.jmaa.2005.01.051. Google Scholar

[36]

Shouchuan Hu and N. S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous differential operator,, Comm. Pure Appl. Anal., 9 (2010), 1801. Google Scholar

[37]

Shouchuan Hu and N. S. Papageorgiou, Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities,, Comm. Pure Applied Anal., 11 (2012), 2005. doi: 10.3934/cpaa.2012.11.2005. Google Scholar

[38]

J. Garcia Melian, J. Rossi and J. Sabina de Lis, A convex-concave problem with a parameter on the boundary condition,, Discrete Contin. Dynam. Systems, 32 (2012), 1095. Google Scholar

[39]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and applications to Landesmann-Lazer type problems in $\rn$,, Proc. Royal Soc. Edinburgh, 129A (1999), 767. Google Scholar

[40]

A. Kristaly, M. Mihaileseu and V. Radulescu, Two nontrivial solutions for a nonhomogeneous Neumann problem: an Orlicz-Sobolev space setting,, Proc. Royal. Soc. Edinburgh, 139A (2009), 367. doi: 10.1017/S030821050700025X. Google Scholar

[41]

S. Kyritsi, D. O'Regan and N. S. Papageorgiou, Multiple solutions for resonant hemivariational inequalities via minimax methods,, Adv. Nonlin. Studies, 9 (2009), 453. Google Scholar

[42]

S. Kyritsi and N. S. Papageorgiou, Multiple solutions for nonlinear elliptic equations with asymmetric reaction term,, Discrete Cont Dyn Systems, 33 (2013), 2469. Google Scholar

[43]

O. A. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations,", Academic Press, (1968). Google Scholar

[44]

G. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations,, Comm. Part. Diff. Equas., 16 (1991), 311. doi: 10.1080/03605309108820761. Google Scholar

[45]

S. Li, S. Wu and H. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities,, J. Diff. Equas., 185 (2002), 200. doi: 10.1006/jdeq.2001.4167. Google Scholar

[46]

M. Mihailescu, Existence and multiplicity of weak solutions for a class of degenerate nonlinear ellipitc equations,, Boundary Value Problems, (2006), 1. Google Scholar

[47]

M. Mihailescu and V. Radulescu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting,, J. Math. Anal. Appl., 330 (2007), 416. doi: 10.1016/j.jmaa.2006.07.082. Google Scholar

[48]

M. L. Miotto, Multiple solutions for elliptic problems in $R^N$ with critical Spbolev exponent and weight function,, Comm. Pure Appl. Anal., 9 (2010), 233. doi: 10.3934/cpaa.2010.9.233. Google Scholar

[49]

S. Miyajima, D. Motreanu and M. Tanaka, Multiple existence results of solutions for Neumann problems via super- and sub-solutions,, J. Functional Anal., 262 (2012), 1921. doi: 10.1016/j.jfa.2011.11.028. Google Scholar

[50]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, On $p$-Laplace equations with concave terms and asymmetric nonlinearities,, Proc. Royal Soc. Edinburgh, 141A (2011), 171. doi: 10.1017/S0308210509001656. Google Scholar

[51]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems,, Annali Scuola Normale Sup. Pisa, (2011), 729. Google Scholar

[52]

D. Motreanu, D. O'Regan and N. S. Papageorgiou, A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems,, Comm. Pure Appl. Anal., 10 (2011), 1791. doi: 10.3934/cpaa.2011.10.1791. Google Scholar

[53]

D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems,, J. Diff. Equas., 232 (2007), 1. doi: 10.1016/j.jde.2006.09.008. Google Scholar

[54]

D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator,, Proc. Amer. Math. Soc., 139 (2011), 3527. doi: 10.1090/S0002-9939-2011-10884-0. Google Scholar

[55]

N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis,", Springer, (2009). Google Scholar

[56]

N. S. Papageorgiou and E. M. Rocha, On nonlinear parametric problems for $p$-Laplacian like operators,, RACSAM, 103 (2009), 177. doi: 10.1007/BF03191850. Google Scholar

[57]

N. S. Papageorgiou, E. M. Rocha and V. Staicu, A multiplicity theorem for hemivariational inequalities with a $p$-Laplacian like differential operator,, Nonlin. Anal., 69 (2008), 1150. doi: 10.1016/j.na.2007.06.023. Google Scholar

[58]

P. Pucci and J. Serrin, The strong maximum principle revisited,, J. Diff. Equas., 196 (2004), 1. Google Scholar

[59]

P. Pucci and J. Serrin, "The Maximum Principle,", Birkhauser, (2007). doi: 10.1016/j.jde.2004.09.002. Google Scholar

[60]

J. M. Rakotoson, Generalized eigenvalue problem for totally discontinuous operator,, Discrete Contin. Dynam. Systems, 28 (2010), 343. doi: 10.3934/dcds.2010.28.343. Google Scholar

[61]

P. Roselli and B. Sciunzi, A strong comparison principle for the $p$-Laplacian,, Proc. Amer. Math. Soc., 135 (2007), 3217. doi: 10.1090/S0002-9939-07-08847-8. Google Scholar

[62]

M. Sun, Multiplicity of solutions for a class of quasilinear elliptic equation at resonance,, J. Math. Anal. Appl., 386 (2012), 661. doi: 10.1016/j.jmaa.2011.08.030. Google Scholar

[63]

J. Vazquez, A strong maximum principle for some quailinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191. doi: 10.1007/BF01449041. Google Scholar

[64]

R. Zhang, J. Chen and F. Zhan, Multiple solutions for superlinear elliptic systems of Hamiltonian type,, Discrete Cont Dyn Systems, 30 (2011), 1249. doi: 10.3934/dcds.2011.30.1249. Google Scholar

[1]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[2]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[3]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[4]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[5]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[6]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[7]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[8]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

[9]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[10]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[11]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[12]

Jijiang Sun, Shiwang Ma. Nontrivial solutions for Kirchhoff type equations via Morse theory. Communications on Pure & Applied Analysis, 2014, 13 (2) : 483-494. doi: 10.3934/cpaa.2014.13.483

[13]

Jesus Ildefonso Díaz, Jacqueline Fleckinger-Pellé. Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 193-200. doi: 10.3934/dcds.2004.10.193

[14]

Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240

[15]

Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155

[16]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[17]

Tommaso Leonori, Martina Magliocca. Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2923-2960. doi: 10.3934/cpaa.2019131

[18]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[19]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[20]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]