• Previous Article
    Logarithmically improved criteria for Euler and Navier-Stokes equations
  • CPAA Home
  • This Issue
  • Next Article
    Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data
November  2013, 12(6): 2721-2737. doi: 10.3934/cpaa.2013.12.2721

Positive solutions of integral systems involving Bessel potentials

1. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097

Received  October 2012 Revised  December 2012 Published  May 2013

This paper is concerned with integral systems involving the Bessel potentials. Such integral systems are helpful to understand the corresponding PDE systems, such as some static Shrödinger systems with the critical and the supercritical exponents. We use the lifting lemma on regularity to obtain an integrability interval of solutions. Since the Bessel kernel does not have singularity at infinity, we extend the integrability interval to the whole $[1,\infty]$. Next, we use the method of moving planes to prove the radial symmetry for the positive solution of the system. Based on these results, by an iteration we obtain the estimate of the exponential decay of those solutions near infinity. Finally, we discuss the uniqueness of the positive solution of PDE system under some assumption.
Citation: Yutian Lei. Positive solutions of integral systems involving Bessel potentials. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2721-2737. doi: 10.3934/cpaa.2013.12.2721
References:
[1]

J. Bourgain, Global solutions of nonlinear Schrödinger equations,, in, 46 (1999). Google Scholar

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. Google Scholar

[3]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547. Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, (1981). Google Scholar

[8]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential,, Commun. Pure Appl. Anal., 10 (2011), 1111. doi: 10.3934/cpaa.2011.10.1111. Google Scholar

[9]

F. Hang, On the integral systems related to Hardy-Littlewood-sobolev inequality,, Math. Res. Lett., 14 (2007), 373. Google Scholar

[10]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5. Google Scholar

[11]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,, coherent solitons in coupled nonlinear Schr\, 86 (2001), 5043. Google Scholar

[12]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations,, Math. Z., 273 (2013), 883. doi: 10.1007/s00209-012-1036-6. Google Scholar

[13]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43. doi: 10.1007/s00526-011-0450-7. Google Scholar

[14]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221. Google Scholar

[15]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049. doi: 10.1137/080712301. Google Scholar

[16]

Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153. Google Scholar

[17]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. Google Scholar

[18]

T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (2005), 403. doi: 10.1016/j.anihpc.2004.03.004. Google Scholar

[19]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943. doi: 10.1016/j.jmaa.2007.12.064. Google Scholar

[20]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type system,, Math. Comput. Modelling, 49 (2009), 379. doi: 10.1016/j.mcm.2008.06.010. Google Scholar

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rational Mech. Anal., 195 (2010), 455. doi: 10.1007/s00205-008-0208-3. Google Scholar

[22]

J. Smoller, "Shock Waves and Reaction-diffusion Equations,", Grundlehren der Mathematischen Wissenschaften, (1983). Google Scholar

[23]

E. Stein, "Singular Integrals and Differentiability Properties of Function,", Princetion Math. Series, (1970). Google Scholar

[24]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. Google Scholar

[25]

W. Ziemer, "Weakly Differentiable Functions,", Graduate Texts in Math. Vol. 120, (1989). Google Scholar

show all references

References:
[1]

J. Bourgain, Global solutions of nonlinear Schrödinger equations,, in, 46 (1999). Google Scholar

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. Google Scholar

[3]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547. Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, (1981). Google Scholar

[8]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential,, Commun. Pure Appl. Anal., 10 (2011), 1111. doi: 10.3934/cpaa.2011.10.1111. Google Scholar

[9]

F. Hang, On the integral systems related to Hardy-Littlewood-sobolev inequality,, Math. Res. Lett., 14 (2007), 373. Google Scholar

[10]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5. Google Scholar

[11]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,, coherent solitons in coupled nonlinear Schr\, 86 (2001), 5043. Google Scholar

[12]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations,, Math. Z., 273 (2013), 883. doi: 10.1007/s00209-012-1036-6. Google Scholar

[13]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43. doi: 10.1007/s00526-011-0450-7. Google Scholar

[14]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221. Google Scholar

[15]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049. doi: 10.1137/080712301. Google Scholar

[16]

Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153. Google Scholar

[17]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. Google Scholar

[18]

T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (2005), 403. doi: 10.1016/j.anihpc.2004.03.004. Google Scholar

[19]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943. doi: 10.1016/j.jmaa.2007.12.064. Google Scholar

[20]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type system,, Math. Comput. Modelling, 49 (2009), 379. doi: 10.1016/j.mcm.2008.06.010. Google Scholar

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rational Mech. Anal., 195 (2010), 455. doi: 10.1007/s00205-008-0208-3. Google Scholar

[22]

J. Smoller, "Shock Waves and Reaction-diffusion Equations,", Grundlehren der Mathematischen Wissenschaften, (1983). Google Scholar

[23]

E. Stein, "Singular Integrals and Differentiability Properties of Function,", Princetion Math. Series, (1970). Google Scholar

[24]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. Google Scholar

[25]

W. Ziemer, "Weakly Differentiable Functions,", Graduate Texts in Math. Vol. 120, (1989). Google Scholar

[1]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[2]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[3]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[4]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[5]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[6]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[7]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[8]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[9]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[10]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[11]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[12]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[13]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[14]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[15]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[16]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[17]

Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893

[18]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

[19]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[20]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]