• Previous Article
    Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions
  • CPAA Home
  • This Issue
  • Next Article
    Positive solutions of integral systems involving Bessel potentials
November  2013, 12(6): 2715-2719. doi: 10.3934/cpaa.2013.12.2715

Logarithmically improved criteria for Euler and Navier-Stokes equations

1. 

Department and Institute of Mathematics, Fudan University, Shanghai 200433, China

2. 

Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433

Received  September 2012 Revised  February 2013 Published  May 2013

In this paper we prove the logarithmically improved Serrin's criteria to the three-dimensional incompressible Navier-Stokes equations.
Citation: Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715
References:
[1]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. Google Scholar

[2]

J. M. Bony, Calcul symbolique et propagation des singularites pour les quations aux drivees partielles non lineaires,, Ann. Sci. Ecole Norm. Sup., 14 (1981), 209. Google Scholar

[3]

C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations,, available online at arXiv:0705.3659., (). Google Scholar

[4]

J. Y. Chemin, "Perfect Incompressibe Fluids,", Oxford University Press, (1998). Google Scholar

[5]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago University Press, (1988). Google Scholar

[6]

P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations,, Indiana Univ. Math. J., 42 (1993), 775. Google Scholar

[7]

C. Fefferman, http://www.claymath.org/millennium/Navier-Stokes equations., preprint., (). Google Scholar

[8]

L. Iskauriaza, G. A. Seregin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness,, (Russian) Uspekhi Mat. Nauk, 58 (2003), 3. Google Scholar

[9]

H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations,, Math. Z., 235 (2000), 173. Google Scholar

[10]

O. A. Ladyzhenskaya, "Mathematical Questions of the Dynamics of a Viscous Incompressible Fluid,", Nauka, (1970). Google Scholar

[11]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, (2002). Google Scholar

[12]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173. Google Scholar

[13]

G. Seregin and V. Sverak, Navier-Stokes equations with lower bounds on the pressure,, Arch. Ration. Mech. Anal., 163 (2002), 65. Google Scholar

[14]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187. Google Scholar

[15]

J. Serrin, The initial value problem for the Navier-Stokes equations,, Nonlinear Problems, (1963), 69. Google Scholar

[16]

M. Struwe, On partial regularity results for the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 437. Google Scholar

[17]

T. Tao, Nonlinear dispersive equations. Local and global analysis,, CBMS Regional Conference Series in Mathematics, (2006). Google Scholar

[18]

R. Temam, "Navier-Stokes Equations,", Second Edition, (2001). Google Scholar

[19]

H. Triebel, "Theory of Function Spaces,", Birkauser Verlag, (1983). Google Scholar

[20]

Y. Zhou and S. Gala, Logarithmically improved Serrin's criterion to the Navier-Stokes equations in multiplier spaces,, preprint, (2008). Google Scholar

[21]

Y. Zhou and Z. Lei, Logarithmically improved criteria for Euler and Navier-Stokes equations,, avaliable on http://arxiv.org/abs/0805.2784v1, (). Google Scholar

show all references

References:
[1]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. Google Scholar

[2]

J. M. Bony, Calcul symbolique et propagation des singularites pour les quations aux drivees partielles non lineaires,, Ann. Sci. Ecole Norm. Sup., 14 (1981), 209. Google Scholar

[3]

C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations,, available online at arXiv:0705.3659., (). Google Scholar

[4]

J. Y. Chemin, "Perfect Incompressibe Fluids,", Oxford University Press, (1998). Google Scholar

[5]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago University Press, (1988). Google Scholar

[6]

P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations,, Indiana Univ. Math. J., 42 (1993), 775. Google Scholar

[7]

C. Fefferman, http://www.claymath.org/millennium/Navier-Stokes equations., preprint., (). Google Scholar

[8]

L. Iskauriaza, G. A. Seregin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness,, (Russian) Uspekhi Mat. Nauk, 58 (2003), 3. Google Scholar

[9]

H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations,, Math. Z., 235 (2000), 173. Google Scholar

[10]

O. A. Ladyzhenskaya, "Mathematical Questions of the Dynamics of a Viscous Incompressible Fluid,", Nauka, (1970). Google Scholar

[11]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, (2002). Google Scholar

[12]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173. Google Scholar

[13]

G. Seregin and V. Sverak, Navier-Stokes equations with lower bounds on the pressure,, Arch. Ration. Mech. Anal., 163 (2002), 65. Google Scholar

[14]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187. Google Scholar

[15]

J. Serrin, The initial value problem for the Navier-Stokes equations,, Nonlinear Problems, (1963), 69. Google Scholar

[16]

M. Struwe, On partial regularity results for the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 437. Google Scholar

[17]

T. Tao, Nonlinear dispersive equations. Local and global analysis,, CBMS Regional Conference Series in Mathematics, (2006). Google Scholar

[18]

R. Temam, "Navier-Stokes Equations,", Second Edition, (2001). Google Scholar

[19]

H. Triebel, "Theory of Function Spaces,", Birkauser Verlag, (1983). Google Scholar

[20]

Y. Zhou and S. Gala, Logarithmically improved Serrin's criterion to the Navier-Stokes equations in multiplier spaces,, preprint, (2008). Google Scholar

[21]

Y. Zhou and Z. Lei, Logarithmically improved criteria for Euler and Navier-Stokes equations,, avaliable on http://arxiv.org/abs/0805.2784v1, (). Google Scholar

[1]

Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure & Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117

[2]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[3]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[4]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[5]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[6]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[7]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[8]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[9]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[10]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[11]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[12]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure & Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

[13]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[14]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[15]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[16]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[17]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[18]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[19]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[20]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]