November  2013, 12(6): 2645-2667. doi: 10.3934/cpaa.2013.12.2645

Decay rates for Kirchhoff-Timoshenko transmission problems

1. 

Department of Mathematics and Mechanics, Kharkov Karazin National University, 4, Svobody sq., Kharkov 61077, Ukraine

Received  August 2012 Revised  January 2013 Published  May 2013

A linear transmission problem for a thermoelastic Timoshenko beam model with Fourier low of heat conduction which has a Kirchhoff part with hereditary heat conduction of Gurtin-Pipkin type is considered. We prove that the system is exponentially stable under certain conditions on its parameters. The same result for the problem with purely elastic Kirchhoff part is obtained.
Citation: Tamara Fastovska. Decay rates for Kirchhoff-Timoshenko transmission problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2645-2667. doi: 10.3934/cpaa.2013.12.2645
References:
[1]

M. S. Alves, J. E. Muñoz Rivera, C. A. Raposo, M. Sepúlveda and O. P. Vera Villagrán, Uniform stabilization for transmission problem for Timoshenko's system with memory,, J. Math. Anal.Appl., 369 (2010), 323. doi: 10.1016/j.jmaa.2010.02.045. Google Scholar

[2]

W. D. Bastos, C. A. Raposo and M. L. Santos, A transmission problem for the Timoshenko system,, Comp. Appl. Math., 26 (2007), 215. Google Scholar

[3]

I. Chueshov and I. Lasiecka, Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits,, Milan J. Math., 74 (2006), 117. doi: 10.1007/s00032-006-0050-8. Google Scholar

[4]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory,, Commun. Pure Appl. Anal., 6 (2007), 83. Google Scholar

[5]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermo-viscoelastic model with memory,, Nonlin. Anal. TMA, 71 (2009), 4833. Google Scholar

[6]

G. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford University Press, (1985). Google Scholar

[7]

M. Grasselli, J. E. Muñoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory,, J. Math. Anal. Appl., 309 (2005), 1. doi: 10.1016/j.jmaa.2004.10.071. Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373. Google Scholar

[9]

J. Lagnese, "Boundary Stabilization of Thing Plates,", Philadelphia: SIAM, (1989). Google Scholar

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houary, Nonlinear damped Timoshenko systems with second sound - global existence and exponential stability,, Math. Med. Appl. Sci., 32 (2009), 505. Google Scholar

[11]

J. E. Muñoz Rivera and H. Portillo Oquendo, The transmission problem for thermoelastic beams,, J. Thermal Stresses, 24 (2001), 1137. doi: 10.1080/014957301753251665. Google Scholar

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5. Google Scholar

[13]

J. E. Muñoz Rivera and J. C. Vila Bravo, The transmission problem to thermoelastic plate of hyperbolic type,, IMA J. Appl. Math., 74 (2009), 950. Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983). Google Scholar

[15]

R. Racke and B. Said-Houary, Decay rates and global existence for semilinear dissipative Timoshenko systems,, Quart. Appl. Math., (). doi: 10.1090/S0033-569X-2012-01280-8. Google Scholar

[16]

P. Schiavone and R. J.Tait, Thermal effects in Mindlin-type plates,, Q. Jl. Mech. appl. Math., 46 (1993), 27. Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 148 (1987), 65. Google Scholar

show all references

References:
[1]

M. S. Alves, J. E. Muñoz Rivera, C. A. Raposo, M. Sepúlveda and O. P. Vera Villagrán, Uniform stabilization for transmission problem for Timoshenko's system with memory,, J. Math. Anal.Appl., 369 (2010), 323. doi: 10.1016/j.jmaa.2010.02.045. Google Scholar

[2]

W. D. Bastos, C. A. Raposo and M. L. Santos, A transmission problem for the Timoshenko system,, Comp. Appl. Math., 26 (2007), 215. Google Scholar

[3]

I. Chueshov and I. Lasiecka, Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits,, Milan J. Math., 74 (2006), 117. doi: 10.1007/s00032-006-0050-8. Google Scholar

[4]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory,, Commun. Pure Appl. Anal., 6 (2007), 83. Google Scholar

[5]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermo-viscoelastic model with memory,, Nonlin. Anal. TMA, 71 (2009), 4833. Google Scholar

[6]

G. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford University Press, (1985). Google Scholar

[7]

M. Grasselli, J. E. Muñoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory,, J. Math. Anal. Appl., 309 (2005), 1. doi: 10.1016/j.jmaa.2004.10.071. Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373. Google Scholar

[9]

J. Lagnese, "Boundary Stabilization of Thing Plates,", Philadelphia: SIAM, (1989). Google Scholar

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houary, Nonlinear damped Timoshenko systems with second sound - global existence and exponential stability,, Math. Med. Appl. Sci., 32 (2009), 505. Google Scholar

[11]

J. E. Muñoz Rivera and H. Portillo Oquendo, The transmission problem for thermoelastic beams,, J. Thermal Stresses, 24 (2001), 1137. doi: 10.1080/014957301753251665. Google Scholar

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5. Google Scholar

[13]

J. E. Muñoz Rivera and J. C. Vila Bravo, The transmission problem to thermoelastic plate of hyperbolic type,, IMA J. Appl. Math., 74 (2009), 950. Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983). Google Scholar

[15]

R. Racke and B. Said-Houary, Decay rates and global existence for semilinear dissipative Timoshenko systems,, Quart. Appl. Math., (). doi: 10.1090/S0033-569X-2012-01280-8. Google Scholar

[16]

P. Schiavone and R. J.Tait, Thermal effects in Mindlin-type plates,, Q. Jl. Mech. appl. Math., 46 (1993), 27. Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 148 (1987), 65. Google Scholar

[1]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure & Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[2]

Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383

[3]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations & Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[4]

Qiong Zhang. Exponential stability of a joint-leg-beam system with memory damping. Mathematical Control & Related Fields, 2015, 5 (2) : 321-333. doi: 10.3934/mcrf.2015.5.321

[5]

Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555

[6]

Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure & Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721

[7]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[8]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control & Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[9]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[10]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[11]

Filippo Dell'Oro, Vittorino Pata. Memory relaxation of type III thermoelastic extensible beams and Berger plates. Evolution Equations & Control Theory, 2012, 1 (2) : 251-270. doi: 10.3934/eect.2012.1.251

[12]

Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009

[13]

Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463

[14]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[15]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[16]

Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure & Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83

[17]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[18]

Valeria Danese, Pelin G. Geredeli, Vittorino Pata. Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2881-2904. doi: 10.3934/dcds.2015.35.2881

[19]

Nanhee Kim. Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress. Evolution Equations & Control Theory, 2013, 2 (4) : 679-693. doi: 10.3934/eect.2013.2.679

[20]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]