
Previous Article
Super polyharmonic property of solutions for PDE systems and its applications
 CPAA Home
 This Issue

Next Article
Dynamics of vacuum states for onedimensional full compressible NavierStokes equations
Local uniqueness of steady spherical transonic shockfronts for the threedimensional full Euler equations
1.  School of Mathematical Sciences, Fudan University, Shanghai 200433, China 
2.  Department of Mathematics, East China Normal University, Shanghai 200241, China 
References:
show all references
References:
[1] 
Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355372. doi: 10.3934/ipi.2008.2.355 
[2] 
Michal Beneš. Mixed initialboundary value problem for the threedimensional NavierStokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135144. doi: 10.3934/proc.2011.2011.135 
[3] 
Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolicelliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 25772592. doi: 10.3934/cpaa.2018122 
[4] 
GuiQiang Chen, Beixiang Fang. Stability of transonic shockfronts in threedimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 85114. doi: 10.3934/dcds.2009.23.85 
[5] 
Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptichyperbolic DaveyStewartson system. Conference Publications, 2001, 2001 (Special) : 182190. doi: 10.3934/proc.2001.2001.182 
[6] 
Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a threedimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure & Applied Analysis, 2010, 9 (4) : 839865. doi: 10.3934/cpaa.2010.9.839 
[7] 
Myoungjean Bae, Yong Park. Radial transonic shock solutions of EulerPoisson system in convergent nozzles. Discrete & Continuous Dynamical Systems  S, 2018, 11 (5) : 773791. doi: 10.3934/dcdss.2018049 
[8] 
Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems  A, 2001, 7 (4) : 763780. doi: 10.3934/dcds.2001.7.763 
[9] 
Maria Rosaria Lancia, Alejandro VélezSantiago, Paola Vernole. A quasilinear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains. Discrete & Continuous Dynamical Systems  A, 2019, 39 (8) : 44874518. doi: 10.3934/dcds.2019184 
[10] 
Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhofftypenonlocal operators of elliptic type. Communications on Pure & Applied Analysis, 2015, 14 (2) : 361371. doi: 10.3934/cpaa.2015.14.361 
[11] 
Victor Isakov, Shingyu Leung, Jianliang Qian. A threedimensional inverse gravimetry problem for ice with snow caps. Inverse Problems & Imaging, 2013, 7 (2) : 523544. doi: 10.3934/ipi.2013.7.523 
[12] 
O. V. Kapustyan, V. S. Melnik, José Valero. A weak attractor and properties of solutions for the threedimensional Bénard problem. Discrete & Continuous Dynamical Systems  A, 2007, 18 (2&3) : 449481. doi: 10.3934/dcds.2007.18.449 
[13] 
Isaac A. García, Claudia Valls. The threedimensional center problem for the zeroHopf singularity. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 20272046. doi: 10.3934/dcds.2016.36.2027 
[14] 
Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for threedimensional irregular packing problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 121. doi: 10.3934/jimo.2018160 
[15] 
Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concaveconvex problem with nonlocal mixed boundary data. Communications on Pure & Applied Analysis, 2018, 17 (3) : 11031120. doi: 10.3934/cpaa.2018053 
[16] 
Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655668. doi: 10.3934/nhm.2014.9.655 
[17] 
Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (1) : 261277. doi: 10.3934/dcds.2016.36.261 
[18] 
J. F. Padial. Existence and estimate of the location of the freeboundary for a non local inverse ellipticparabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 11761185. doi: 10.3934/proc.2011.2011.1176 
[19] 
Xavier FernándezReal, Xavier RosOton. On global solutions to semilinear elliptic equations related to the onephase free boundary problem. Discrete & Continuous Dynamical Systems  A, 2019, 0 (0) : 115. doi: 10.3934/dcds.2019238 
[20] 
Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete & Continuous Dynamical Systems  A, 2004, 10 (1&2) : 201210. doi: 10.3934/dcds.2004.10.201 
2017 Impact Factor: 0.884
Tools
Metrics
Other articles
by authors
[Back to Top]