January  2013, 12(1): 237-252. doi: 10.3934/cpaa.2013.12.237

The point-wise estimates of solutions for semi-linear dissipative wave equation

1. 

Department of Mathematics, North China Electric Power University, Beijing 102208

Received  May 2011 Revised  September 2011 Published  September 2012

In this paper we focus on the global-in-time existence and the point-wise estimates of solutions to the initial value problem for the semi-linear dissipative wave equation in multi-dimensions. By using the method of Green function combined with the energy estimates, we obtain the point-wise decay estimates of solutions to the problem.
Citation: Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237
References:
[1]

V. Belleri and V. Pata, Attractors for semi-linear strongly damped wave equations on $R^3$,, Discrete Contin. Dyn. Syst., 7 (2001), 719. doi: 10.3934/dcds.2001.7.719. Google Scholar

[2]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Math., 19,, Amer. Math. Soc., (1998). Google Scholar

[3]

D. Hoff and K. Zumbrun, Point-wise decay estimates for multidimensional Navier-Stokes diffusion waves,, Z. angew Math. Phys., 48 (1997), 597. doi: 10.1007/s000330050049. Google Scholar

[4]

T. Hosono and T. Ogawa, Large time behavior and $L^p-L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations,, J. Differential Equations, 203 (2004), 82. doi: 10.1016/j.jde.2004.03.034. Google Scholar

[5]

R. Ikehata, K. Nishihara and H. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption,, J. Differential Equations, 226 (2006), 1. doi: 10.1016/j.jde.2006.01.002. Google Scholar

[6]

R. Ikehata and M. Ohta, Critical exponent for semi-linear dissipative wave equation in $\mathbbR^n$,, J. Math. Anal. Appl., 269 (2002), 87. doi: 10.1016/S0022-247X(02)00021-5. Google Scholar

[7]

N. I. Karachalios and N. M. Stavrakakis, Estimates on the dimension of a global attractor for a semi-linear dissipative wave equation on $R^n$,, Discrete Contin. Dyn. Syst., 8 (2002), 939. doi: 10.3934/dcds.2002.8.939. Google Scholar

[8]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semi-linear wave equation with a dissipative term,, J. Math. Soc. Japan, 47 (1995), 617. doi: 10.2969/jmsj/04740617. Google Scholar

[9]

T.-T. Li and Y. Zhou, Breakdown of solutions to $\Box u+u_t=|u|^{1+\alpha}$,, Discrete Contin. Dyn. Syst., 1 (1995), 503. doi: 10.3934/dcds.1995.1.503. Google Scholar

[10]

J. Lin, K. Nishihara and J. Zhai, $L^2$-estimates of solutions for damped wave equations with space-time dependent damping term,, J. Differential Equations, 248 (2010), 403. doi: 10.1016/j.jde.2009.09.022. Google Scholar

[11]

Y. Liu and W. Wang, The point-wise estimates of solutions for dissipative wave equation in multi-dimensions,, Discrete Contin. Dyn. Syst., 20 (2008), 1013. doi: 10.3934/dcds.2008.20.1013. Google Scholar

[12]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semi-linear dissipative wave equations,, Math. Z., 214 (1993), 325. doi: .10.1007/BF02572407. Google Scholar

[13]

K. Nishihara, Global asymptotics for the damped wave equation with absorption in higher dimensional space,, J. Math. Soc. Japan, 58 (2006), 805. doi: 10.2969/jmsj/1156342039. Google Scholar

[14]

K. Nishihara and J. Zhai, Asymptotic behaviors of solutions for time dependent damped wave equations,, J. Math. Anal. Appl., 360 (2009), 412. doi: 10.1016/j.jmaa.2009.06.065. Google Scholar

[15]

K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption,, J. Math. Anal. Appl., 313 (2006), 598. doi: 10.1016/j.jmaa.2005.08.059. Google Scholar

[16]

K. Ono, Asymptotic behavior of solutions for semi-linear telegraph equations,, J. Math. Tokushima Univ., 31 (1997), 11. Google Scholar

[17]

K. Ono, Global existence and asymptotic behavior of small solutions for semi-linear dissipative wave equations,, Discrete Contin. Dyn. Syst., 9 (2003), 651. doi: 10.3934/dcds.2003.9.651. Google Scholar

[18]

G. Todorova and B. Yordnov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464. doi: 10.1006/jdeq.2000.3933. Google Scholar

[19]

W. Wang and T. Yang, The point-wise estimates of solutions for Euler equations with damping in multi-dimensions,, J. Differential Equations, 173 (2001), 410. doi: 10.1006/jdeq.2000.3937. Google Scholar

show all references

References:
[1]

V. Belleri and V. Pata, Attractors for semi-linear strongly damped wave equations on $R^3$,, Discrete Contin. Dyn. Syst., 7 (2001), 719. doi: 10.3934/dcds.2001.7.719. Google Scholar

[2]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Math., 19,, Amer. Math. Soc., (1998). Google Scholar

[3]

D. Hoff and K. Zumbrun, Point-wise decay estimates for multidimensional Navier-Stokes diffusion waves,, Z. angew Math. Phys., 48 (1997), 597. doi: 10.1007/s000330050049. Google Scholar

[4]

T. Hosono and T. Ogawa, Large time behavior and $L^p-L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations,, J. Differential Equations, 203 (2004), 82. doi: 10.1016/j.jde.2004.03.034. Google Scholar

[5]

R. Ikehata, K. Nishihara and H. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption,, J. Differential Equations, 226 (2006), 1. doi: 10.1016/j.jde.2006.01.002. Google Scholar

[6]

R. Ikehata and M. Ohta, Critical exponent for semi-linear dissipative wave equation in $\mathbbR^n$,, J. Math. Anal. Appl., 269 (2002), 87. doi: 10.1016/S0022-247X(02)00021-5. Google Scholar

[7]

N. I. Karachalios and N. M. Stavrakakis, Estimates on the dimension of a global attractor for a semi-linear dissipative wave equation on $R^n$,, Discrete Contin. Dyn. Syst., 8 (2002), 939. doi: 10.3934/dcds.2002.8.939. Google Scholar

[8]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semi-linear wave equation with a dissipative term,, J. Math. Soc. Japan, 47 (1995), 617. doi: 10.2969/jmsj/04740617. Google Scholar

[9]

T.-T. Li and Y. Zhou, Breakdown of solutions to $\Box u+u_t=|u|^{1+\alpha}$,, Discrete Contin. Dyn. Syst., 1 (1995), 503. doi: 10.3934/dcds.1995.1.503. Google Scholar

[10]

J. Lin, K. Nishihara and J. Zhai, $L^2$-estimates of solutions for damped wave equations with space-time dependent damping term,, J. Differential Equations, 248 (2010), 403. doi: 10.1016/j.jde.2009.09.022. Google Scholar

[11]

Y. Liu and W. Wang, The point-wise estimates of solutions for dissipative wave equation in multi-dimensions,, Discrete Contin. Dyn. Syst., 20 (2008), 1013. doi: 10.3934/dcds.2008.20.1013. Google Scholar

[12]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semi-linear dissipative wave equations,, Math. Z., 214 (1993), 325. doi: .10.1007/BF02572407. Google Scholar

[13]

K. Nishihara, Global asymptotics for the damped wave equation with absorption in higher dimensional space,, J. Math. Soc. Japan, 58 (2006), 805. doi: 10.2969/jmsj/1156342039. Google Scholar

[14]

K. Nishihara and J. Zhai, Asymptotic behaviors of solutions for time dependent damped wave equations,, J. Math. Anal. Appl., 360 (2009), 412. doi: 10.1016/j.jmaa.2009.06.065. Google Scholar

[15]

K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption,, J. Math. Anal. Appl., 313 (2006), 598. doi: 10.1016/j.jmaa.2005.08.059. Google Scholar

[16]

K. Ono, Asymptotic behavior of solutions for semi-linear telegraph equations,, J. Math. Tokushima Univ., 31 (1997), 11. Google Scholar

[17]

K. Ono, Global existence and asymptotic behavior of small solutions for semi-linear dissipative wave equations,, Discrete Contin. Dyn. Syst., 9 (2003), 651. doi: 10.3934/dcds.2003.9.651. Google Scholar

[18]

G. Todorova and B. Yordnov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464. doi: 10.1006/jdeq.2000.3933. Google Scholar

[19]

W. Wang and T. Yang, The point-wise estimates of solutions for Euler equations with damping in multi-dimensions,, J. Differential Equations, 173 (2001), 410. doi: 10.1006/jdeq.2000.3937. Google Scholar

[1]

Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307

[2]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[3]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019115

[4]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[5]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[6]

Petteri Harjulehto, Peter Hästö, Juha Tiirola. Point-wise behavior of the Geman--McClure and the Hebert--Leahy image restoration models. Inverse Problems & Imaging, 2015, 9 (3) : 835-851. doi: 10.3934/ipi.2015.9.835

[7]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[8]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[9]

Yongqin Liu, Weike Wang. The pointwise estimates of solutions for dissipative wave equation in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1013-1028. doi: 10.3934/dcds.2008.20.1013

[10]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[11]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[12]

Tuan Anh Dao, Michael Reissig. $ L^1 $ estimates for oscillating integrals and their applications to semi-linear models with $ \sigma $-evolution like structural damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222

[13]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[14]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[15]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[16]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[17]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[18]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[19]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[20]

Guangyue Huang, Wenyi Chen. Uniqueness for the solution of semi-linear elliptic Neumann problems in $\mathbb R^3$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1269-1273. doi: 10.3934/cpaa.2008.7.1269

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]