July  2013, 12(4): 1687-1703. doi: 10.3934/cpaa.2013.12.1687

On the backgrounds of the theory of m-Hessian equations

1. 

Saint-Petersburg State University of Architecture and Civil Engineering, 2-nd Krasnoarmeiskaya St. 4, 190005 St. Petersburg, Russian Federation, Russian Federation

Received  July 2011 Revised  April 2012 Published  November 2012

The paper presents some pieces from algebra, theory of function and differential geometry, which have emerged in frames of the modern theory of fully nonlinear second order partial differential equations and revealed their interdependence. It also contains a survey of recent results on solvability of the Dirichlet problem for m-Hessian equations, which actually brought out this development.
Citation: Nina Ivochkina, Nadezda Filimonenkova. On the backgrounds of the theory of m-Hessian equations. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1687-1703. doi: 10.3934/cpaa.2013.12.1687
References:
[1]

A. D. Aleksandrov, Dirichlet problem for the equation $Det ||z_{ij}||=\varphi$,, (Russian) Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr., 13 (1958), 5. Google Scholar

[2]

L. Caffarelli, L. Nirenberg and J. Y. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,, Acta Math., 155 (1985), 261. Google Scholar

[3]

L. Caffarelli and L. Silvestre, Smooth approximations to solutions of nonconvex fully nonlinear elliptic equations,, AMS Transl., 229 (2010), 67. Google Scholar

[4]

H. Dong, N. V. Krylov and X. Li, On fully nonlinear elliptic and parabolic equations in domains with VMO coefficients,, Algebra i Analiz, 23 (2011). Google Scholar

[5]

L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations,, Comm. Pure Appl. Math., 35 (1982), 333. Google Scholar

[6]

N. V. Filimonenkova, Analysis of the behavior of a solution to m-Hessian equations near the boundary of a domain,, Problems in mathematical analysis, 166 (2010), 338. Google Scholar

[7]

N. V. Filimonenkova, An estimate for the Hölder constant for weak solutions to m-Hessian equations in a closed domain,, Vestnik St. Petersburg Univ. Math., 43 (2010), 183. Google Scholar

[8]

N. V. Filimonenkova, "A Quality Analysis of Weak Solutions to m-Hessian Equations,", Ph.D thesis, (2010). Google Scholar

[9]

L. Garding, An inequality for hyperbolic polynomials,, J. Math. Mech., 8 (1959), 957. Google Scholar

[10]

N. M. Ivochkina, Second order equations with d-elliptic operators,, Trudy Mat. Inst. Steklov, 147 (1980), 40. Google Scholar

[11]

N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge - Ampere type,, Mat. Sb., 122 (1983), 265. Google Scholar

[12]

N. M. Ivochkina, Solution of the Dirichlet problem for some equations of Monge - Ampere type,, Mat. Sb., 128 (1985), 403. Google Scholar

[13]

N. M. Ivochkina, Solution of the Dirichlet problem for the curvature equation order m,, Algebra i Analiz, 2 (1990), 192. Google Scholar

[14]

N. M. Ivochkina, The Dirichlet principle in the theory of equations of Monge - Ampere type,, Algebra i Analiz, 4 (1993). Google Scholar

[15]

N. M. Ivochkina, On the Hölder constant for the second order derivatives of admissible solutions to m-Hessian equations,, Problems in mathematical analysis, 170 (2010), 496. Google Scholar

[16]

N. M. Ivochkina, N. S. Trudinger and X.-J. Wang, The Dirichlet problem for degenerate Hessian equations,, Comm. Partial Differ. Equations, 29 (2004), 219. Google Scholar

[17]

N. M. Ivochkina and N. V. Filimonenkova, Estimate of the Hölder constant for solutions to m-Hessian equations,, Problems in mathematical analysis, 159 (2009), 67. Google Scholar

[18]

H. Jenkins and J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions,, J. Reine Angew. Math., 229 (1968), 170. Google Scholar

[19]

N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 75. Google Scholar

[20]

D. Labutin, Potential theory for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1. Google Scholar

[21]

M. Lin and N. S. Trudinger, On some inequalities for elementary symmetric functions,, Bull. Austr. Math. Soc., 50 (1994), 317. Google Scholar

[22]

A. V. Pogorelov, "The Mincowski Multidimensional Problem,", Nauka, (1975). Google Scholar

[23]

J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables,, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413. Google Scholar

[24]

N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations,, Arch. Rat. Mech. Anal., 111 (1990), 153. Google Scholar

[25]

N. S. Trudinger, Maximum principles for curvature quotient equations,, J. Math. Sci. Univ. Tokyo, 1 (1994), 551. Google Scholar

[26]

N. S. Trudinger, Weak solutions of Hessian equations,, Comm. Partial Differential Equation, 22 (1997), 1251. Google Scholar

[27]

N. S. Trudinger and X.-J. Wang, Hessian measures II,, Ann. of Math., 150 (1999), 579. Google Scholar

[28]

N. S. Trudinger and X.-J. Wang, Hessian measures I,, Topol. Methods Nonlinear Anal., 10 (1997), 225. Google Scholar

show all references

References:
[1]

A. D. Aleksandrov, Dirichlet problem for the equation $Det ||z_{ij}||=\varphi$,, (Russian) Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr., 13 (1958), 5. Google Scholar

[2]

L. Caffarelli, L. Nirenberg and J. Y. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,, Acta Math., 155 (1985), 261. Google Scholar

[3]

L. Caffarelli and L. Silvestre, Smooth approximations to solutions of nonconvex fully nonlinear elliptic equations,, AMS Transl., 229 (2010), 67. Google Scholar

[4]

H. Dong, N. V. Krylov and X. Li, On fully nonlinear elliptic and parabolic equations in domains with VMO coefficients,, Algebra i Analiz, 23 (2011). Google Scholar

[5]

L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations,, Comm. Pure Appl. Math., 35 (1982), 333. Google Scholar

[6]

N. V. Filimonenkova, Analysis of the behavior of a solution to m-Hessian equations near the boundary of a domain,, Problems in mathematical analysis, 166 (2010), 338. Google Scholar

[7]

N. V. Filimonenkova, An estimate for the Hölder constant for weak solutions to m-Hessian equations in a closed domain,, Vestnik St. Petersburg Univ. Math., 43 (2010), 183. Google Scholar

[8]

N. V. Filimonenkova, "A Quality Analysis of Weak Solutions to m-Hessian Equations,", Ph.D thesis, (2010). Google Scholar

[9]

L. Garding, An inequality for hyperbolic polynomials,, J. Math. Mech., 8 (1959), 957. Google Scholar

[10]

N. M. Ivochkina, Second order equations with d-elliptic operators,, Trudy Mat. Inst. Steklov, 147 (1980), 40. Google Scholar

[11]

N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge - Ampere type,, Mat. Sb., 122 (1983), 265. Google Scholar

[12]

N. M. Ivochkina, Solution of the Dirichlet problem for some equations of Monge - Ampere type,, Mat. Sb., 128 (1985), 403. Google Scholar

[13]

N. M. Ivochkina, Solution of the Dirichlet problem for the curvature equation order m,, Algebra i Analiz, 2 (1990), 192. Google Scholar

[14]

N. M. Ivochkina, The Dirichlet principle in the theory of equations of Monge - Ampere type,, Algebra i Analiz, 4 (1993). Google Scholar

[15]

N. M. Ivochkina, On the Hölder constant for the second order derivatives of admissible solutions to m-Hessian equations,, Problems in mathematical analysis, 170 (2010), 496. Google Scholar

[16]

N. M. Ivochkina, N. S. Trudinger and X.-J. Wang, The Dirichlet problem for degenerate Hessian equations,, Comm. Partial Differ. Equations, 29 (2004), 219. Google Scholar

[17]

N. M. Ivochkina and N. V. Filimonenkova, Estimate of the Hölder constant for solutions to m-Hessian equations,, Problems in mathematical analysis, 159 (2009), 67. Google Scholar

[18]

H. Jenkins and J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions,, J. Reine Angew. Math., 229 (1968), 170. Google Scholar

[19]

N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 75. Google Scholar

[20]

D. Labutin, Potential theory for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1. Google Scholar

[21]

M. Lin and N. S. Trudinger, On some inequalities for elementary symmetric functions,, Bull. Austr. Math. Soc., 50 (1994), 317. Google Scholar

[22]

A. V. Pogorelov, "The Mincowski Multidimensional Problem,", Nauka, (1975). Google Scholar

[23]

J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables,, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413. Google Scholar

[24]

N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations,, Arch. Rat. Mech. Anal., 111 (1990), 153. Google Scholar

[25]

N. S. Trudinger, Maximum principles for curvature quotient equations,, J. Math. Sci. Univ. Tokyo, 1 (1994), 551. Google Scholar

[26]

N. S. Trudinger, Weak solutions of Hessian equations,, Comm. Partial Differential Equation, 22 (1997), 1251. Google Scholar

[27]

N. S. Trudinger and X.-J. Wang, Hessian measures II,, Ann. of Math., 150 (1999), 579. Google Scholar

[28]

N. S. Trudinger and X.-J. Wang, Hessian measures I,, Topol. Methods Nonlinear Anal., 10 (1997), 225. Google Scholar

[1]

Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. M/M/3/3 and M/M/4/4 retrial queues. Journal of Industrial & Management Optimization, 2009, 5 (3) : 431-451. doi: 10.3934/jimo.2009.5.431

[2]

Wei-guo Wang, Wei-chao Wang, Ren-cang Li. Deflating irreducible singular M-matrix algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 491-518. doi: 10.3934/naco.2013.3.491

[3]

Julio C. Rebelo, Ana L. Silva. On the Burnside problem in Diff(M). Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 423-439. doi: 10.3934/dcds.2007.17.423

[4]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[5]

Zsolt Saffer, Wuyi Yue. M/M/c multiple synchronous vacation model with gated discipline. Journal of Industrial & Management Optimization, 2012, 8 (4) : 939-968. doi: 10.3934/jimo.2012.8.939

[6]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[7]

Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2019092

[8]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[9]

Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008

[10]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[11]

Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021

[12]

Hideaki Takagi. Times until service completion and abandonment in an M/M/$ m$ preemptive-resume LCFS queue with impatient customers. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1701-1726. doi: 10.3934/jimo.2018028

[13]

Patrick Bonckaert, Timoteo Carletti, Ernest Fontich. On dynamical systems close to a product of $m$ rotations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 349-366. doi: 10.3934/dcds.2009.24.349

[14]

Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070

[15]

Robert F. Bailey, John N. Bray. Decoding the Mathieu group M12. Advances in Mathematics of Communications, 2007, 1 (4) : 477-487. doi: 10.3934/amc.2007.1.477

[16]

Adelheid L. J. Thieme. Wanderings with Lady M.: A happy threesome. Mathematical Biosciences & Engineering, 2010, 7 (1) : iv-ix. doi: 10.3934/mbe.2010.7.1iv

[17]

Gregory M. Manning. Some results on the $m(4)$ problem of Erdos and Hajnal. Electronic Research Announcements, 1995, 1: 112-113.

[18]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[19]

Petr Kůrka. Iterative systems of real Möbius transformations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567

[20]

Jiří Minarčík, Masato Kimura, Michal Beneš. Comparing motion of curves and hypersurfaces in $ \mathbb{R}^m $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4815-4826. doi: 10.3934/dcdsb.2019032

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]