July  2013, 12(4): 1569-1585. doi: 10.3934/cpaa.2013.12.1569

Uniqueness for elliptic problems with Hölder--type dependence on the solution

1. 

Dipartimento di Matematica, Università di Roma 1, Piazza A. Moro 2, 00185 Roma

2. 

Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scienti ca 1, 00133 Roma

Received  May 2011 Revised  June 2012 Published  November 2012

We prove uniqueness of weak (or entropy) solutions for nonmonotone elliptic equations of the type \begin{eqnarray} -div (a(x,u)\nabla u)=f \end{eqnarray} in a bounded set $\Omega\subset R^N$ with Dirichlet boundary conditions. The novelty of our results consists in the possibility to deal with cases when $a(x,u)$ is only Hölder continuous with respect to $u$.
Citation: Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569
References:
[1]

M. Artola, Sur une classe de problèmes paraboliques quasi-linéaires,, Boll. U.M.I. B., 5 (1986), 51. Google Scholar

[2]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vàzquez, An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240. Google Scholar

[3]

D. Blanchard, F. Désir and O. Guibé, Quasi-linear degenerate elliptic problems with $L^1$ data,, Nonlinear Anal., 60 (2005), 557. doi: 10.1016/S0362-546X(04)00395-5. Google Scholar

[4]

L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form,, Progress in elliptic and parabolic partial differential equations (Capri, (1994), 43. Google Scholar

[5]

L. Boccardo, Uniqueness of solutions for some nonlinear Dirichlet problems,, dedicated to M. Artola, (). Google Scholar

[6]

L. Boccardo, A remark on some nonlinear elliptic problems,, 2001-Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems, Conf. 08 (2002), 47. Google Scholar

[7]

L. Boccardo and B. Dacorogna, Monotonicity of certain differential operators in divergence form,, Manuscripta Math., 64 (1989), 253. doi: 10.1007/BF01160123. Google Scholar

[8]

L. Boccardo, I. Diaz, D. Giachetti and F. Murat, Existence of a solution for a weaker form of a nonlinear elliptic equation,, in, 208 (1988), 229. Google Scholar

[9]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. P.D.E., 17 (1992), 641. doi: 10.1080/03605309208820857. Google Scholar

[10]

L. Boccardo, T. Gallouët and F. Murat, Unicité de la solution pour des equations elliptiques non linéaires,, C. R. Acad. Sc. Paris, 315 (1992), 1159. Google Scholar

[11]

J. Carrillo and M. Chipot, On some elliptic equations involving derivatives of the nonlinearity,, Proc. Roy. Soc. Edinburgh, 100 (1985), 281. doi: 10.1017/S0308210500013822. Google Scholar

[12]

J. Casado Diaz, F. Murat and A. Porretta, Uniqueness results for pseudomonotone problems with $p>2$,, C. R. Math. Acad. Sci. Paris, 344 (2007), 487. doi: 10.1016/j.crma.2007.02.007. Google Scholar

[13]

M. Chipot and G. Michaille, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities,, Ann. Sc. Norm. Sup. Pisa, 16 (1989), 137. Google Scholar

[14]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the H-convergence of quasi-linear parabolic equations,, Ann. Mat. Pura Appl., 170 (1996), 207. doi: 10.1007/BF01758989. Google Scholar

[15]

O. Guibé, Uniqueness of the solution to quasilinear elliptic equations under a local condition on the diffusion matrix,, Adv. Math. Sci. Appl., 17 (2007), 357. Google Scholar

[16]

O. Guibé, Uniqueness of the renormalized solution to a class of nonlinear elliptic equations,, in, 23 (2008), 459. Google Scholar

[17]

A. G. Kartsatos and I. V. Skrypnik, The index of a critical point for nonlinear elliptic operators with strong coefficient growth,, J. Math. Soc. Japan, 52 (2000), 109. doi: 10.2969/jmsj/05210109. Google Scholar

[18]

C. Leone and A. Porretta, Entropy solutions for nonlinear elliptic equations in $ L^1$,, Nonlinear Anal., 32 (1998), 325. doi: 10.1016/S0362-546X(96)00323-9. Google Scholar

[19]

M. Marcus and V. J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33 (1979), 217. doi: 10.1016/0022-1236(79)90113-7. Google Scholar

[20]

A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form,, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915. Google Scholar

[21]

A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 407. doi: 10.1007/s00030-004-0031-y. Google Scholar

[22]

A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data,, Houston J. Math., 26 (2000), 183. Google Scholar

[23]

M. M. Porzio, A uniqueness result for monotone elliptic problems,, C. R. Math. Acad. Sci. Paris, 337 (2003), 313. doi: 10.1016/S1631-073X(03)00347-9. Google Scholar

[24]

N. Trudinger, On the comparison principle for quasilinear divergence structure equations,, Arch. for Rat. Mech. Anal., 57 (1975), 128. doi: 10.1007/BF00248414. Google Scholar

show all references

References:
[1]

M. Artola, Sur une classe de problèmes paraboliques quasi-linéaires,, Boll. U.M.I. B., 5 (1986), 51. Google Scholar

[2]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vàzquez, An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240. Google Scholar

[3]

D. Blanchard, F. Désir and O. Guibé, Quasi-linear degenerate elliptic problems with $L^1$ data,, Nonlinear Anal., 60 (2005), 557. doi: 10.1016/S0362-546X(04)00395-5. Google Scholar

[4]

L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form,, Progress in elliptic and parabolic partial differential equations (Capri, (1994), 43. Google Scholar

[5]

L. Boccardo, Uniqueness of solutions for some nonlinear Dirichlet problems,, dedicated to M. Artola, (). Google Scholar

[6]

L. Boccardo, A remark on some nonlinear elliptic problems,, 2001-Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems, Conf. 08 (2002), 47. Google Scholar

[7]

L. Boccardo and B. Dacorogna, Monotonicity of certain differential operators in divergence form,, Manuscripta Math., 64 (1989), 253. doi: 10.1007/BF01160123. Google Scholar

[8]

L. Boccardo, I. Diaz, D. Giachetti and F. Murat, Existence of a solution for a weaker form of a nonlinear elliptic equation,, in, 208 (1988), 229. Google Scholar

[9]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. P.D.E., 17 (1992), 641. doi: 10.1080/03605309208820857. Google Scholar

[10]

L. Boccardo, T. Gallouët and F. Murat, Unicité de la solution pour des equations elliptiques non linéaires,, C. R. Acad. Sc. Paris, 315 (1992), 1159. Google Scholar

[11]

J. Carrillo and M. Chipot, On some elliptic equations involving derivatives of the nonlinearity,, Proc. Roy. Soc. Edinburgh, 100 (1985), 281. doi: 10.1017/S0308210500013822. Google Scholar

[12]

J. Casado Diaz, F. Murat and A. Porretta, Uniqueness results for pseudomonotone problems with $p>2$,, C. R. Math. Acad. Sci. Paris, 344 (2007), 487. doi: 10.1016/j.crma.2007.02.007. Google Scholar

[13]

M. Chipot and G. Michaille, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities,, Ann. Sc. Norm. Sup. Pisa, 16 (1989), 137. Google Scholar

[14]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the H-convergence of quasi-linear parabolic equations,, Ann. Mat. Pura Appl., 170 (1996), 207. doi: 10.1007/BF01758989. Google Scholar

[15]

O. Guibé, Uniqueness of the solution to quasilinear elliptic equations under a local condition on the diffusion matrix,, Adv. Math. Sci. Appl., 17 (2007), 357. Google Scholar

[16]

O. Guibé, Uniqueness of the renormalized solution to a class of nonlinear elliptic equations,, in, 23 (2008), 459. Google Scholar

[17]

A. G. Kartsatos and I. V. Skrypnik, The index of a critical point for nonlinear elliptic operators with strong coefficient growth,, J. Math. Soc. Japan, 52 (2000), 109. doi: 10.2969/jmsj/05210109. Google Scholar

[18]

C. Leone and A. Porretta, Entropy solutions for nonlinear elliptic equations in $ L^1$,, Nonlinear Anal., 32 (1998), 325. doi: 10.1016/S0362-546X(96)00323-9. Google Scholar

[19]

M. Marcus and V. J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33 (1979), 217. doi: 10.1016/0022-1236(79)90113-7. Google Scholar

[20]

A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form,, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915. Google Scholar

[21]

A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 407. doi: 10.1007/s00030-004-0031-y. Google Scholar

[22]

A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data,, Houston J. Math., 26 (2000), 183. Google Scholar

[23]

M. M. Porzio, A uniqueness result for monotone elliptic problems,, C. R. Math. Acad. Sci. Paris, 337 (2003), 313. doi: 10.1016/S1631-073X(03)00347-9. Google Scholar

[24]

N. Trudinger, On the comparison principle for quasilinear divergence structure equations,, Arch. for Rat. Mech. Anal., 57 (1975), 128. doi: 10.1007/BF00248414. Google Scholar

[1]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[2]

Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050

[3]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[4]

Junichi Harada, Mitsuharu Ôtani. $H^2$-solutions for some elliptic equations with nonlinear boundary conditions. Conference Publications, 2009, 2009 (Special) : 333-339. doi: 10.3934/proc.2009.2009.333

[5]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[6]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[7]

Olivier Guibé, Anna Mercaldo. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Communications on Pure & Applied Analysis, 2008, 7 (1) : 163-192. doi: 10.3934/cpaa.2008.7.163

[8]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[9]

Zuji Guo, Zhaoli Liu. Perturbed elliptic equations with oscillatory nonlinearities. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3567-3585. doi: 10.3934/dcds.2012.32.3567

[10]

Nanhee Kim. Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress. Evolution Equations & Control Theory, 2013, 2 (4) : 679-693. doi: 10.3934/eect.2013.2.679

[11]

Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79

[12]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[13]

Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798

[14]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[15]

Dominique Blanchard, Olivier Guibé, Hicham Redwane. Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (1) : 197-217. doi: 10.3934/cpaa.2016.15.197

[16]

Miao Chen, Youyan Wan, Chang-Lin Xiang. Local uniqueness problem for a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1037-1055. doi: 10.3934/cpaa.2020048

[17]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[18]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[19]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

[20]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]