May  2013, 12(3): 1307-1319. doi: 10.3934/cpaa.2013.12.1307

The regularity for a class of singular differential equations

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  February 2012 Revised  May 2012 Published  September 2012

We find an iteration technique and thus prove the optimal global regularity for the boundary value problem of a class of singular differential equations with strongly singular lower terms at the boundary. As applications, we obtain the regularity for the radial solutions of Ginzburg-Landau equations and harmonic maps.
Citation: Huaiyu Jian, Xiaolin Liu, Hongjie Ju. The regularity for a class of singular differential equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1307-1319. doi: 10.3934/cpaa.2013.12.1307
References:
[1]

F. Bethuel, H. Brezis and F. Helein, "Ginzburg-Landau Vortices,", Birkhauser, (1993). doi: 10.1007/978-1-4612-0287-5. Google Scholar

[2]

K. Q. Chang, W. Y. Ding and R. G. Ye, Finite time blow-up of the heat flow of harmonic maps from spheres,, J. Differential Geom., 36 (1992), 507. Google Scholar

[3]

T. R. Ding and C. Z. Li, "A Course on Ordinary Diferential Equations,", Higher Educational Press, (1991). Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Seconder Order,", Springer-Verlag, (2001). doi: 10.1007/978-3-642-61798-0. Google Scholar

[5]

M. Guan, S. Gustafson and T. P. Tsai, Global existence and blow-up for harmonic map heat flow,, J. Differential Equations, 246 (2009), 1. doi: 10.1016/j.jde.2008.09.011. Google Scholar

[6]

C. F. Gui, H. Y. Jian and H. J. Ju, Properties of translating solutions to mean curvature flow,, Discrete Contin. Dyn. Syst., 28 (2010), 441. doi: 10.3934/dcds.2010.28.441. Google Scholar

[7]

R. M. Herve and M. Herve, Qualitative study of the real solutions of a differential equation associated with the Ginzburg-Landau equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 11 (1994), 427. Google Scholar

[8]

H. Y. Jian, H. J. Ju and W. Sun, Traveling fronts of curve flow with external force field,, Commun. Pure Appl. Anal., 9 (2010), 975. doi: 10.3934/cpaa.2010.9.975. Google Scholar

[9]

H. Y. Jian and Y. N. Liu, Ginzburg-Landau vortex and mean curvature flow with external force field,, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1831. doi: 10.1007/s10114-005-0698-y. Google Scholar

[10]

H. Y. Jian and B. Song, Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors,, J. Differential Equations, 170 (2001), 123. doi: 10.1006/jdeq.2000.3822. Google Scholar

[11]

H. Y. Jian and X. J. Wang, Bernsterin theorem and regularity for a class of Monge Amp\`ere equations,, preprint, (2010). Google Scholar

[12]

H. Y. Jian and X. J. Wang, Global regularity for fully nonlinear singular elliptic equations,, preprint, (2011). Google Scholar

[13]

H. Y. Jian and X. W. Xu, The vortex dynamics of a Ginzburg-Landau system under pinning effect,, Science in China Ser. A, 46 (2003), 488. doi: 10.1007/BF02884020. Google Scholar

[14]

H. J. Ju, J. Lu and H. Y. Jian, Translating solutions to mean curvature flow with a forcing term in Minkowski space,, Commun. Pure Appl. Anal., 9 (2010), 963. doi: 10.3934/cpaa.2010.9.963. Google Scholar

[15]

P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equations,, J. Funct. Anal., 130 (1995), 334. doi: 10.1006/jfan.1995.1073. Google Scholar

[16]

P. Raphael and R. Schweyer, Stable blow-up dynamics for 1-corotational enenrgy critical harmonic heat flow,, preprint, (). Google Scholar

show all references

References:
[1]

F. Bethuel, H. Brezis and F. Helein, "Ginzburg-Landau Vortices,", Birkhauser, (1993). doi: 10.1007/978-1-4612-0287-5. Google Scholar

[2]

K. Q. Chang, W. Y. Ding and R. G. Ye, Finite time blow-up of the heat flow of harmonic maps from spheres,, J. Differential Geom., 36 (1992), 507. Google Scholar

[3]

T. R. Ding and C. Z. Li, "A Course on Ordinary Diferential Equations,", Higher Educational Press, (1991). Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Seconder Order,", Springer-Verlag, (2001). doi: 10.1007/978-3-642-61798-0. Google Scholar

[5]

M. Guan, S. Gustafson and T. P. Tsai, Global existence and blow-up for harmonic map heat flow,, J. Differential Equations, 246 (2009), 1. doi: 10.1016/j.jde.2008.09.011. Google Scholar

[6]

C. F. Gui, H. Y. Jian and H. J. Ju, Properties of translating solutions to mean curvature flow,, Discrete Contin. Dyn. Syst., 28 (2010), 441. doi: 10.3934/dcds.2010.28.441. Google Scholar

[7]

R. M. Herve and M. Herve, Qualitative study of the real solutions of a differential equation associated with the Ginzburg-Landau equation,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 11 (1994), 427. Google Scholar

[8]

H. Y. Jian, H. J. Ju and W. Sun, Traveling fronts of curve flow with external force field,, Commun. Pure Appl. Anal., 9 (2010), 975. doi: 10.3934/cpaa.2010.9.975. Google Scholar

[9]

H. Y. Jian and Y. N. Liu, Ginzburg-Landau vortex and mean curvature flow with external force field,, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1831. doi: 10.1007/s10114-005-0698-y. Google Scholar

[10]

H. Y. Jian and B. Song, Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors,, J. Differential Equations, 170 (2001), 123. doi: 10.1006/jdeq.2000.3822. Google Scholar

[11]

H. Y. Jian and X. J. Wang, Bernsterin theorem and regularity for a class of Monge Amp\`ere equations,, preprint, (2010). Google Scholar

[12]

H. Y. Jian and X. J. Wang, Global regularity for fully nonlinear singular elliptic equations,, preprint, (2011). Google Scholar

[13]

H. Y. Jian and X. W. Xu, The vortex dynamics of a Ginzburg-Landau system under pinning effect,, Science in China Ser. A, 46 (2003), 488. doi: 10.1007/BF02884020. Google Scholar

[14]

H. J. Ju, J. Lu and H. Y. Jian, Translating solutions to mean curvature flow with a forcing term in Minkowski space,, Commun. Pure Appl. Anal., 9 (2010), 963. doi: 10.3934/cpaa.2010.9.963. Google Scholar

[15]

P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equations,, J. Funct. Anal., 130 (1995), 334. doi: 10.1006/jfan.1995.1073. Google Scholar

[16]

P. Raphael and R. Schweyer, Stable blow-up dynamics for 1-corotational enenrgy critical harmonic heat flow,, preprint, (). Google Scholar

[1]

Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations & Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006

[2]

Brahim Bougherara, Jacques Giacomoni, Jesus Hernández. Some regularity results for a singular elliptic problem. Conference Publications, 2015, 2015 (special) : 142-150. doi: 10.3934/proc.2015.0142

[3]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[4]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[5]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure & Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[6]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[7]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[8]

Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019220

[9]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[10]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[11]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[12]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[13]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[14]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[15]

Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885

[16]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[17]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[18]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[19]

Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211

[20]

Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure & Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]