May  2012, 11(3): 945-958. doi: 10.3934/cpaa.2012.11.945

Multiple solutions of second-order ordinary differential equation via Morse theory

1. 

School of Mathematics Sciences, Shanxi University, Taiyuan, Shanxi 030006, China

2. 

School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083

Received  September 2010 Revised  September 2011 Published  December 2011

In this paper, we consider the the second-order ordinary differential equation with periodic boundary problem $ - \ddot{x}(t)=f(t,x(t))$, subject to $x(0)-x(2\pi)=\dot{x}(0)-\dot{x}(2\pi)=0$, where $f:C([0, 2\pi]\times R, R)$. The operator $K=(-\frac{d^2}{dt^2}+I)^{-1}$ plays an important role. By using Morse index, Leray-Schauder degree and Morse index theorem of the type Lazer-Solimini, we obtain that the equation has at least two or three nontrivial solutions without assuming nondegeneracy of critical points and has at least four nontrivial solutions assuming nondegeneracy of critical points.
Citation: Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975). Google Scholar

[2]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993). Google Scholar

[3]

K. C. Chang, S. J. Li and J. Q. Liu, Remarks on multiple solutions for asymptotically linear elliptic boundary value problem,, Topol. Methods Nonlinear Anal., 3 (1994), 179. Google Scholar

[4]

Jorge Cossio, Sigifredo Herrón and Carlos Vélez, Existence of solutions for an asymptotically linear Dirichlet problem via Lazer-Solimini results,, Topol. Methods Nonlinear Anal., 71 (2009), 66. doi: 10.1016/j.na.2008.10.031. Google Scholar

[5]

C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance,, Topol. Methods Nonlinear Anal., 157 (1990), 99. Google Scholar

[6]

Leszek Gasiński and Nikolaos S. Papageorgiou, A multiplicity theorem for double resonant periodic problems,, Advanced Nonlinear Studies, 10 (2010), 819. Google Scholar

[7]

R. Iannacci, M. N. Nkashama and J. R. Ward, Jr., Nonlinear second order elliptic partial differential equations at resonance,, Trans. of the AMS, 311 (1989), 711. doi: 10.1090/s0002-9947-1989-0951886-3. Google Scholar

[8]

S. Kesavan, "Nonlinear Functional Analysis,", (A First Course) in Text and Reading in Mathematics, (2004). Google Scholar

[9]

E. Landesman and A. C. Lazer, Nonlinear perturbations of linear eigenvalues problem at resonance,, J. Math. Mech., 19 (1970), 609. Google Scholar

[10]

A. C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type,, Topol. Methods Nonlinear Anal., 12 (1988), 761. Google Scholar

[11]

Wenduan Lu, "Variational Methods in Differential Equations,", Sichuan University Publishers, (1995). Google Scholar

[12]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations,, Manuscripta Math., 124 (2007), 507. doi: 10.1007/s00229-007-0127-x. Google Scholar

[13]

S. Li and W. Zou, The computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue,, J. Math. Anal. Appl., 235 (1999), 237. doi: 10.1016/jmaa.1999.6396. Google Scholar

[14]

Zhanping Liang and Jiabao Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance,, J. Math. Anal. Appl., 354 (2009), 147. doi: 10.1016/j.jmaa.2008.12.053. Google Scholar

[15]

Shibo Liu, Remarks on multiple solutions for elliptic resonant problems,, J. Math. Anal. Appl., 336 (2007), 498. doi: 10.1016/j.jmaa.2007.01.051. Google Scholar

[16]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989). Google Scholar

[17]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Issues Math. Ed., (1986). Google Scholar

[18]

S. Robinson, Double resonance in semilinear elliptic boundary value problems over bounded and unbounded domains,, Nonlinear Analysis, 21 (1993), 407. Google Scholar

[19]

S. Robinson, Multiple solutions for semilinear elliptic boundary value problem at resonance,, Electron. J. Differential Equations, 1 (1995), 1. Google Scholar

[20]

J. B. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, Nonlinear Anal., 48 (2002), 881. doi: 10.1016/s0362-54x100100221-2. Google Scholar

[21]

J. B. Su and Leiga Zhao, Multiple periodic solutions of ordinary differential for equations with double resonance,, Nonlinear Anal., 70 (2009), 1520. doi: 10.1016/j.na.2008.04.012. Google Scholar

[22]

C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,, Proc. Amer. Math. Soc., 126 (1998), 3263. doi: 10.1090/S0002-9939-98-04706-6. Google Scholar

[23]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191. doi: 10.1007/BF01449041. Google Scholar

[24]

Chiara Zanini, Rotation numbers, eigenvalues, and the Poincar-Birkhoff theorem,, J. Math. Anal. Appl., 279 (2003), 290. doi: 10.1016/S0022-247X(03)00012-X. Google Scholar

[25]

W. Zou and J. Q. Liu, Multiple solutions for resonant elliptic equations via local linking theory and morse theory,, Journal of Differential Equations, 170 (2001), 68. doi: 10.1006/jdeq.2000.3812. Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975). Google Scholar

[2]

K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems,", Birkh\, (1993). Google Scholar

[3]

K. C. Chang, S. J. Li and J. Q. Liu, Remarks on multiple solutions for asymptotically linear elliptic boundary value problem,, Topol. Methods Nonlinear Anal., 3 (1994), 179. Google Scholar

[4]

Jorge Cossio, Sigifredo Herrón and Carlos Vélez, Existence of solutions for an asymptotically linear Dirichlet problem via Lazer-Solimini results,, Topol. Methods Nonlinear Anal., 71 (2009), 66. doi: 10.1016/j.na.2008.10.031. Google Scholar

[5]

C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance,, Topol. Methods Nonlinear Anal., 157 (1990), 99. Google Scholar

[6]

Leszek Gasiński and Nikolaos S. Papageorgiou, A multiplicity theorem for double resonant periodic problems,, Advanced Nonlinear Studies, 10 (2010), 819. Google Scholar

[7]

R. Iannacci, M. N. Nkashama and J. R. Ward, Jr., Nonlinear second order elliptic partial differential equations at resonance,, Trans. of the AMS, 311 (1989), 711. doi: 10.1090/s0002-9947-1989-0951886-3. Google Scholar

[8]

S. Kesavan, "Nonlinear Functional Analysis,", (A First Course) in Text and Reading in Mathematics, (2004). Google Scholar

[9]

E. Landesman and A. C. Lazer, Nonlinear perturbations of linear eigenvalues problem at resonance,, J. Math. Mech., 19 (1970), 609. Google Scholar

[10]

A. C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type,, Topol. Methods Nonlinear Anal., 12 (1988), 761. Google Scholar

[11]

Wenduan Lu, "Variational Methods in Differential Equations,", Sichuan University Publishers, (1995). Google Scholar

[12]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations,, Manuscripta Math., 124 (2007), 507. doi: 10.1007/s00229-007-0127-x. Google Scholar

[13]

S. Li and W. Zou, The computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue,, J. Math. Anal. Appl., 235 (1999), 237. doi: 10.1016/jmaa.1999.6396. Google Scholar

[14]

Zhanping Liang and Jiabao Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance,, J. Math. Anal. Appl., 354 (2009), 147. doi: 10.1016/j.jmaa.2008.12.053. Google Scholar

[15]

Shibo Liu, Remarks on multiple solutions for elliptic resonant problems,, J. Math. Anal. Appl., 336 (2007), 498. doi: 10.1016/j.jmaa.2007.01.051. Google Scholar

[16]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989). Google Scholar

[17]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Issues Math. Ed., (1986). Google Scholar

[18]

S. Robinson, Double resonance in semilinear elliptic boundary value problems over bounded and unbounded domains,, Nonlinear Analysis, 21 (1993), 407. Google Scholar

[19]

S. Robinson, Multiple solutions for semilinear elliptic boundary value problem at resonance,, Electron. J. Differential Equations, 1 (1995), 1. Google Scholar

[20]

J. B. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, Nonlinear Anal., 48 (2002), 881. doi: 10.1016/s0362-54x100100221-2. Google Scholar

[21]

J. B. Su and Leiga Zhao, Multiple periodic solutions of ordinary differential for equations with double resonance,, Nonlinear Anal., 70 (2009), 1520. doi: 10.1016/j.na.2008.04.012. Google Scholar

[22]

C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,, Proc. Amer. Math. Soc., 126 (1998), 3263. doi: 10.1090/S0002-9939-98-04706-6. Google Scholar

[23]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191. doi: 10.1007/BF01449041. Google Scholar

[24]

Chiara Zanini, Rotation numbers, eigenvalues, and the Poincar-Birkhoff theorem,, J. Math. Anal. Appl., 279 (2003), 290. doi: 10.1016/S0022-247X(03)00012-X. Google Scholar

[25]

W. Zou and J. Q. Liu, Multiple solutions for resonant elliptic equations via local linking theory and morse theory,, Journal of Differential Equations, 170 (2001), 68. doi: 10.1006/jdeq.2000.3812. Google Scholar

[1]

Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617

[2]

Zongming Guo, Zhongyuan Liu, Juncheng Wei, Feng Zhou. Bifurcations of some elliptic problems with a singular nonlinearity via Morse index. Communications on Pure & Applied Analysis, 2011, 10 (2) : 507-525. doi: 10.3934/cpaa.2011.10.507

[3]

Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003

[4]

Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985

[5]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[6]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[7]

Pablo Amster, Pablo De Nápoli. Non-asymptotic Lazer-Leach type conditions for a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 757-767. doi: 10.3934/dcds.2011.29.757

[8]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[9]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[10]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[11]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[12]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[13]

Philip Schrader. Morse theory for elastica. Journal of Geometric Mechanics, 2016, 8 (2) : 235-256. doi: 10.3934/jgm.2016006

[14]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[15]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[16]

Feiyao Ma, Lihe Wang. Schauder type estimates of linearized Mullins-Sekerka problem. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1037-1050. doi: 10.3934/cpaa.2012.11.1037

[17]

Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637

[18]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[19]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[20]

Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]