May  2012, 11(3): 861-883. doi: 10.3934/cpaa.2012.11.861

Bernstein estimates: weakly coupled systems and integral equations

1. 

Department of Mathematics, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

2. 

Instituto Superior Técnico, Universidade Técnica de Lisboa, Departamento de Matemática, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Received  October 2010 Revised  November 2011 Published  December 2011

In this paper we extend the classical Bernstein estimates for systems of weakly coupled fully non-linear elliptic equations as well as scalar elliptic equations with non-local integral terms and singular kernels.
Citation: Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861
References:
[1]

T. Arnarson, B. Djehiche, M. Poghosyan and H. Shahgholian, A PDE approach to regularity of solutions to finite horizon optimal switching problems,, Nonlinear Analysis. Theory, 71 (2009), 6054. doi: 10.1016/j.na.2009.05.063. Google Scholar

[2]

G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,, Duke Mathematical Journal, 61 (1990), 835. doi: 10.1215/S0012-7094-90-06132-0. Google Scholar

[3]

J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic systems and applications,, Annales de l'Institut Henri Poincar\'e. Analyse Non Lin\'eaire, 21 (2004), 543. Google Scholar

[4]

L. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,", Volume 43 of American Mathematical Society Colloquium Publications, (1995). Google Scholar

[5]

L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Inventiones Mathematicae, 171 (2008), 425. doi: 10.1007/s00222-007-0086-6. Google Scholar

[6]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Communications on Pure and Applied Mathematics, 62 (2009), 597. doi: 10.1002/cpa.20274. Google Scholar

[7]

D. G. de Figueiredo and E. Mitidieri, Maximum principles for cooperative elliptic systems,, Comptes Rendus de l'Acad\'emie des Sciences. S\'erie I. Math\'ematique, 310 (1990), 49. Google Scholar

[8]

D. G. de Figueiredo and B. Sirakov, Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems,, Mathematische Annalen, 333 (2005), 231. Google Scholar

[9]

B. Djehiche and S. Hamadène, On a finite horizon starting and stopping problem with risk of abandonment,, International J. of Theoretical & Applied Finance, 12 (2009), 523. doi: 10.1142/S0219024909005312. Google Scholar

[10]

B. Djehiche, S. Hamadène and A. Popier, A finite horizon optimal multiple switching problem,, SIAM Journal on Control and Optimization, 48 (2009), 2751. doi: 10.1137/070697641. Google Scholar

[11]

L. C. Evans and A. Friedman, Optimal stochastic switching and the Dirichlet problem for the Bellman equation,, Transactions of the American Mathematical Society, 253 (1979), 365. doi: 10.2307/1998203. Google Scholar

[12]

S. Hamadène and M. Jeanblanc, On the starting and stopping problem: application in reversible investments,, Mathematics of Operations Research, 32 (2007), 182. Google Scholar

[13]

H. Ishii and S. Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs,, Communications in Partial Differential Equations, 16 (1991), 1095. doi: 10.1080/03605309108820791. Google Scholar

[14]

A. Quaas and B. Sirakov, Solvability of monotone systems of fully nonlinear elliptic PDE's,, Comptes Rendus Math\'ematique. Acad\'emie des Sciences. Paris, 346 (2008), 641. doi: 10.1016/j.crma.2008.04.008. Google Scholar

[15]

B. Sirakov, Some estimates and maximum principles for weakly coupled systems of elliptic PDE,, Nonlinear Analysis. Theory, 70 (2009), 3039. doi: 10.1016/j.na.2008.12.026. Google Scholar

[16]

Wei-an Liu and Hua Chen, Viscosity solutions of nonlinear systems of degenerated elliptic equations of second order,, Zeitschrift f\, 19 (2000), 927. Google Scholar

[17]

Weian Liu, Lu Gang, Hua Chen and Yang Yin, Viscosity solutions of fully nonlinear degenerated elliptic systems,, Communications in Applied Analysis. An International Journal for Theory and Applications, 7 (2003), 299. Google Scholar

show all references

References:
[1]

T. Arnarson, B. Djehiche, M. Poghosyan and H. Shahgholian, A PDE approach to regularity of solutions to finite horizon optimal switching problems,, Nonlinear Analysis. Theory, 71 (2009), 6054. doi: 10.1016/j.na.2009.05.063. Google Scholar

[2]

G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,, Duke Mathematical Journal, 61 (1990), 835. doi: 10.1215/S0012-7094-90-06132-0. Google Scholar

[3]

J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic systems and applications,, Annales de l'Institut Henri Poincar\'e. Analyse Non Lin\'eaire, 21 (2004), 543. Google Scholar

[4]

L. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,", Volume 43 of American Mathematical Society Colloquium Publications, (1995). Google Scholar

[5]

L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Inventiones Mathematicae, 171 (2008), 425. doi: 10.1007/s00222-007-0086-6. Google Scholar

[6]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Communications on Pure and Applied Mathematics, 62 (2009), 597. doi: 10.1002/cpa.20274. Google Scholar

[7]

D. G. de Figueiredo and E. Mitidieri, Maximum principles for cooperative elliptic systems,, Comptes Rendus de l'Acad\'emie des Sciences. S\'erie I. Math\'ematique, 310 (1990), 49. Google Scholar

[8]

D. G. de Figueiredo and B. Sirakov, Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems,, Mathematische Annalen, 333 (2005), 231. Google Scholar

[9]

B. Djehiche and S. Hamadène, On a finite horizon starting and stopping problem with risk of abandonment,, International J. of Theoretical & Applied Finance, 12 (2009), 523. doi: 10.1142/S0219024909005312. Google Scholar

[10]

B. Djehiche, S. Hamadène and A. Popier, A finite horizon optimal multiple switching problem,, SIAM Journal on Control and Optimization, 48 (2009), 2751. doi: 10.1137/070697641. Google Scholar

[11]

L. C. Evans and A. Friedman, Optimal stochastic switching and the Dirichlet problem for the Bellman equation,, Transactions of the American Mathematical Society, 253 (1979), 365. doi: 10.2307/1998203. Google Scholar

[12]

S. Hamadène and M. Jeanblanc, On the starting and stopping problem: application in reversible investments,, Mathematics of Operations Research, 32 (2007), 182. Google Scholar

[13]

H. Ishii and S. Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs,, Communications in Partial Differential Equations, 16 (1991), 1095. doi: 10.1080/03605309108820791. Google Scholar

[14]

A. Quaas and B. Sirakov, Solvability of monotone systems of fully nonlinear elliptic PDE's,, Comptes Rendus Math\'ematique. Acad\'emie des Sciences. Paris, 346 (2008), 641. doi: 10.1016/j.crma.2008.04.008. Google Scholar

[15]

B. Sirakov, Some estimates and maximum principles for weakly coupled systems of elliptic PDE,, Nonlinear Analysis. Theory, 70 (2009), 3039. doi: 10.1016/j.na.2008.12.026. Google Scholar

[16]

Wei-an Liu and Hua Chen, Viscosity solutions of nonlinear systems of degenerated elliptic equations of second order,, Zeitschrift f\, 19 (2000), 927. Google Scholar

[17]

Weian Liu, Lu Gang, Hua Chen and Yang Yin, Viscosity solutions of fully nonlinear degenerated elliptic systems,, Communications in Applied Analysis. An International Journal for Theory and Applications, 7 (2003), 299. Google Scholar

[1]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[2]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[3]

Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141

[4]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

[5]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[6]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[7]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[8]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[9]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

[10]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[11]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[12]

Fabio Punzo. Phragmèn-Lindelöf principles for fully nonlinear elliptic equations with unbounded coefficients. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1439-1461. doi: 10.3934/cpaa.2010.9.1439

[13]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[14]

Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001

[15]

David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85

[16]

Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025

[17]

Wanwan Wang, Hongxia Zhang, Huyuan Chen. Remarks on weak solutions of fractional elliptic equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 335-340. doi: 10.3934/cpaa.2016.15.335

[18]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[19]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[20]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]