March  2012, 11(2): 649-658. doi: 10.3934/cpaa.2012.11.649

On the critical exponents for porous medium equation with a localized reaction in high dimensions

1. 

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

Received  September 2010 Revised  June 2011 Published  October 2011

This paper is concerned with the critical exponents for the porous medium equation

$u_{t}=\triangle u^m+a(x)u^p, (x,t)\in R^N\times (0,T), $

where $m>1, p>0,$ and the function $a(x)\geq 0$ has a compact support. Suppose the space dimension $N\geq 2$, we prove that the global exponent $p_0$ and the Fujita type exponent $p_c$ are both $m$: if $0 < p < m$ every solution is global in time, if $ p = m $ all the solutions blow up and if $p > m$ both the blowing up solutions and the global solutions exist. While for the one-dimensional case, it is proved $p_0=\frac{m+1}{2} < m+1 = p_c$ by [E. Ferreira, A. Pablo, J. Vazquez, Classification of blow-up with nonlinear diffusion and localized reaction, J. Diff. Eqns., 231(2006) 195-211].

Citation: Zhilei Liang. On the critical exponents for porous medium equation with a localized reaction in high dimensions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 649-658. doi: 10.3934/cpaa.2012.11.649
References:
[1]

K. Bimpong-Bota, P. Ortoleva and J. Ross, Far-from-equilibrium phenomena at local sites of reaction,, J. Chem. Phys., 60 (1974), 3124. Google Scholar

[2]

D. Andreucci and E. Dibenedetti, On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources,, Ann, 3 (1991), 393. Google Scholar

[3]

C. Gui and X. Kang, Localization for a porous medium type equation in high dimensions,, Trans. Amer. Math. Soc., 356 (2004), 4273. doi: 10.1090/S0002-9947-04-03613-X. Google Scholar

[4]

E. Ferreira, A. Pablo and J. Vazquez, Classification of blow-up with nonlinear diffusion and localized reaction,, J. Diff. Eqns., 231 (2006), 195. doi: 10.1016/j.jde.2006.04.017. Google Scholar

[5]

V. Galaktionov, Blow up for quasilinear heat equations with critical Fujita exponents,, Proc. Roy. Soc. Edinburgh. Sect., 124 (1994), 517. Google Scholar

[6]

V. Galaktionov and H. Levine, On critical Fujita exponents for heat equation with a nonlinear flux conditions on the boundary,, Israel J. Math., 94 (1996), 125. Google Scholar

[7]

Z. Liang and J. Zhao, Localization for the evolution p-Laplacian equation with strongly nonlinear source term,, J. Diff. Eqns., 246 (2009), 391. doi: 10.1016/j.jde.2008.07.038. Google Scholar

[8]

R. Pinsky, Existence and nonexistence of global solutions for $u_t=\Delta u+a(x)u^q$ in $R^d$,, J. Diff. Eqns., 133 (1997), 152. doi: 10.1006/jdeq.1996.3196. Google Scholar

[9]

Y. Qi, Critical exponents of the degenerate parabolic equations,, Since in China, 38 (1995), 1153. Google Scholar

[10]

Y. Qi, The critical exponents of parabolic equations and blow-up in $R^N$,, Proc. Roy. Soc. Edinburgh Sect, 128 (1998), 123. Google Scholar

[11]

V. Samarskii, V. Galaktionov and V. Kurdyumov, et al, "Blow-up in Quasilinear Parabolic Equations,", Nauka, (1987). Google Scholar

[12]

J. Vazquez, "The Porous Medium Equation: Mathematical Theory,", Clarendon Press, (2007). Google Scholar

[13]

Z. Wang, J. Yin and C. Wang, et al., Large time behavior of solutions to Newtonian filtration equation with nonlinear boundary sources,, J. Evol. Equ., 7 (2007), 615. doi: 10.1007/s00028-007-0324-9. Google Scholar

[14]

Z. Wang, J. Yin and C. Wang, Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition,, Appl. Math. Lett., 20 (2007), 142. doi: 10.1016/j.aml.2006.03.008. Google Scholar

[15]

Z. Wu, J. Zhao and J. Yin, et al, "Nonlinear Diffusion Equations,", World Scientific Publishing Co., (2001). doi: 10.1142/9789812799791. Google Scholar

show all references

References:
[1]

K. Bimpong-Bota, P. Ortoleva and J. Ross, Far-from-equilibrium phenomena at local sites of reaction,, J. Chem. Phys., 60 (1974), 3124. Google Scholar

[2]

D. Andreucci and E. Dibenedetti, On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources,, Ann, 3 (1991), 393. Google Scholar

[3]

C. Gui and X. Kang, Localization for a porous medium type equation in high dimensions,, Trans. Amer. Math. Soc., 356 (2004), 4273. doi: 10.1090/S0002-9947-04-03613-X. Google Scholar

[4]

E. Ferreira, A. Pablo and J. Vazquez, Classification of blow-up with nonlinear diffusion and localized reaction,, J. Diff. Eqns., 231 (2006), 195. doi: 10.1016/j.jde.2006.04.017. Google Scholar

[5]

V. Galaktionov, Blow up for quasilinear heat equations with critical Fujita exponents,, Proc. Roy. Soc. Edinburgh. Sect., 124 (1994), 517. Google Scholar

[6]

V. Galaktionov and H. Levine, On critical Fujita exponents for heat equation with a nonlinear flux conditions on the boundary,, Israel J. Math., 94 (1996), 125. Google Scholar

[7]

Z. Liang and J. Zhao, Localization for the evolution p-Laplacian equation with strongly nonlinear source term,, J. Diff. Eqns., 246 (2009), 391. doi: 10.1016/j.jde.2008.07.038. Google Scholar

[8]

R. Pinsky, Existence and nonexistence of global solutions for $u_t=\Delta u+a(x)u^q$ in $R^d$,, J. Diff. Eqns., 133 (1997), 152. doi: 10.1006/jdeq.1996.3196. Google Scholar

[9]

Y. Qi, Critical exponents of the degenerate parabolic equations,, Since in China, 38 (1995), 1153. Google Scholar

[10]

Y. Qi, The critical exponents of parabolic equations and blow-up in $R^N$,, Proc. Roy. Soc. Edinburgh Sect, 128 (1998), 123. Google Scholar

[11]

V. Samarskii, V. Galaktionov and V. Kurdyumov, et al, "Blow-up in Quasilinear Parabolic Equations,", Nauka, (1987). Google Scholar

[12]

J. Vazquez, "The Porous Medium Equation: Mathematical Theory,", Clarendon Press, (2007). Google Scholar

[13]

Z. Wang, J. Yin and C. Wang, et al., Large time behavior of solutions to Newtonian filtration equation with nonlinear boundary sources,, J. Evol. Equ., 7 (2007), 615. doi: 10.1007/s00028-007-0324-9. Google Scholar

[14]

Z. Wang, J. Yin and C. Wang, Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition,, Appl. Math. Lett., 20 (2007), 142. doi: 10.1016/j.aml.2006.03.008. Google Scholar

[15]

Z. Wu, J. Zhao and J. Yin, et al, "Nonlinear Diffusion Equations,", World Scientific Publishing Co., (2001). doi: 10.1142/9789812799791. Google Scholar

[1]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[2]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[3]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[4]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

[5]

Can Gao, Joachim Krieger. Optimal polynomial blow up range for critical wave maps. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1705-1741. doi: 10.3934/cpaa.2015.14.1705

[6]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[7]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[8]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[9]

Mario Ohlberger, Ben Schweizer. Modelling of interfaces in unsaturated porous media. Conference Publications, 2007, 2007 (Special) : 794-803. doi: 10.3934/proc.2007.2007.794

[10]

Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151

[11]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[12]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[13]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

[14]

Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577

[15]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[16]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[17]

C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure & Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523

[18]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[19]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[20]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]